NetBSD/gnu/dist/gcc/config/m32r/m32r.md

1470 lines
41 KiB
Markdown
Raw Normal View History

;; Machine description of the M32R/D cpu for GNU C compiler
;; Copyright (C) 1996, 1997 Free Software Foundation, Inc.
;; This file is part of GNU CC.
;; GNU CC is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 2, or (at your option)
;; any later version.
;; GNU CC is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;; You should have received a copy of the GNU General Public License
;; along with GNU CC; see the file COPYING. If not, write to
;; the Free Software Foundation, 59 Temple Place - Suite 330,
;; Boston, MA 02111-1307, USA.
;; See file "rtl.def" for documentation on define_insn, match_*, et. al.
;; unspec usage
;; 0 - blockage
;; 1 - flush_icache
;; 2 - load_sda_base
;; Insn type. Used to default other attribute values.
;; move4 = 4 byte move
(define_attr "type"
"move,move4,load,store,unary,binary,compare,shift,mul,div,uncond_branch,branch,call,multi,misc"
(const_string "misc"))
;; Length in bytes.
(define_attr "length" ""
(cond [(eq_attr "type" "move,unary,shift,mul,div")
(const_int 2)
(eq_attr "type" "binary")
(if_then_else (match_operand 2 "register_operand" "")
(const_int 2) (const_int 4))
(eq_attr "type" "compare")
(if_then_else (match_operand 1 "register_operand" "")
(const_int 2) (const_int 4))
(eq_attr "type" "load")
(if_then_else (match_operand 1 "memreg_operand" "")
(const_int 2) (const_int 4))
(eq_attr "type" "store")
(if_then_else (match_operand 0 "memreg_operand" "")
(const_int 2) (const_int 4))
(eq_attr "type" "multi")
(const_int 8)
(eq_attr "type" "uncond_branch,branch,call")
(const_int 4)]
(const_int 4)))
;; The length here is the length of a single asm. Unfortunately it might be
;; 2 or 4 so we must allow for 4. That's ok though.
(define_asm_attributes
[(set_attr "length" "4")
(set_attr "type" "multi")])
;; Function units of the M32R
;; Units that take one cycle do not need to be specified.
;; (define_function_unit {name} {num-units} {n-users} {test}
;; {ready-delay} {issue-delay} [{conflict-list}])
;; References to loaded registers should wait a cycle.
;; Memory with load-delay of 1 (i.e. 2 cycle load).
(define_function_unit "memory" 1 1 (eq_attr "type" "load") 2 0)
;; Hack to get GCC to better pack the instructions.
;; We pretend there is a separate long function unit that conflicts with
;; both the left and right 16 bit insn slots.
(define_function_unit "left" 1 1
(eq_attr "length" "2")
1 0
[(not (eq_attr "length" "2"))])
(define_function_unit "right" 1 1
(eq_attr "length" "1")
1 0
[(not (eq_attr "length" "2"))])
(define_function_unit "long" 1 1
(not (eq_attr "length" "2"))
1 0
[(eq_attr "length" "2")])
;; Expand prologue as RTL
;; ??? Unfinished.
;(define_expand "prologue"
; [(const_int 1)]
; ""
; "
;{
;}")
;; Move instructions.
;;
;; For QI and HI moves, the register must contain the full properly
;; sign-extended value. nonzero_bits assumes this [otherwise
;; SHORT_IMMEDIATES_SIGN_EXTEND must be used, but the comment for it
;; says it's a kludge and the .md files should be fixed instead].
(define_expand "movqi"
[(set (match_operand:QI 0 "general_operand" "")
(match_operand:QI 1 "general_operand" ""))]
""
"
{
/* Everything except mem = const or mem = mem can be done easily.
Objects in the small data area are handled too. */
if (GET_CODE (operands[0]) == MEM)
operands[1] = force_reg (QImode, operands[1]);
}")
(define_insn "*movqi_insn"
[(set (match_operand:QI 0 "move_dest_operand" "=r,r,r,r,m")
(match_operand:QI 1 "move_src_operand" "r,I,JQR,m,r"))]
"register_operand (operands[0], QImode) || register_operand (operands[1], QImode)"
"@
mv %0,%1
ldi %0,%#%1
ldi %0,%#%1
ldub %0,%1
stb %1,%0"
[(set_attr "type" "move,move,move4,load,store")])
(define_expand "movhi"
[(set (match_operand:HI 0 "general_operand" "")
(match_operand:HI 1 "general_operand" ""))]
""
"
{
/* Everything except mem = const or mem = mem can be done easily. */
if (GET_CODE (operands[0]) == MEM)
operands[1] = force_reg (HImode, operands[1]);
}")
(define_insn "*movhi_insn"
[(set (match_operand:HI 0 "move_dest_operand" "=r,r,r,r,r,m")
(match_operand:HI 1 "move_src_operand" "r,I,JQR,K,m,r"))]
"register_operand (operands[0], HImode) || register_operand (operands[1], HImode)"
"@
mv %0,%1
ldi %0,%#%1
ldi %0,%#%1
ld24 %0,%#%1
lduh %0,%1
sth %1,%0"
[(set_attr "type" "move,move,move4,move4,load,store")])
(define_expand "movsi"
[(set (match_operand:SI 0 "general_operand" "")
(match_operand:SI 1 "general_operand" ""))]
""
"
{
/* Everything except mem = const or mem = mem can be done easily. */
if (GET_CODE (operands[0]) == MEM)
operands[1] = force_reg (SImode, operands[1]);
/* Small Data Area reference? */
if (small_data_operand (operands[1], SImode))
{
emit_insn (gen_movsi_sda (operands[0], operands[1]));
DONE;
}
/* If medium or large code model, symbols have to be loaded with
seth/add3. */
if (addr32_operand (operands[1], SImode))
{
emit_insn (gen_movsi_addr32 (operands[0], operands[1]));
DONE;
}
}")
(define_insn "*movsi_insn"
[(set (match_operand:SI 0 "move_dest_operand" "=r,r,r,r,r,r,r,m")
;; FIXME: Do we need a const_double constraint here for large unsigned values?
(match_operand:SI 1 "move_src_operand" "r,I,J,MQ,L,N,m,r"))]
"register_operand (operands[0], SImode) || register_operand (operands[1], SImode)"
"@
mv %0,%1
ldi %0,%#%1 ; %X1
ldi %0,%#%1 ; %X1
ld24 %0,%#%1 ; %X1
seth %0,%#%T1
seth %0,%#%T1\;or3 %0,%0,%#%B1
ld %0,%1
st %1,%0"
[(set_attr "type" "move,move,move4,move4,move4,multi,load,store")])
; Try to use a four byte / two byte pair for constants not loadable with
; ldi, ld24, seth.
(define_split
[(set (match_operand:SI 0 "register_operand" "")
(match_operand:SI 1 "two_insn_const_operand" ""))]
""
[(set (match_dup 0) (match_dup 2))
(set (match_dup 0) (ior:SI (match_dup 0) (match_dup 3)))]
"
{
unsigned HOST_WIDE_INT val = INTVAL (operands[1]);
unsigned HOST_WIDE_INT tmp;
int shift;
/* In all cases we will emit two instructions. However we try to
use 2 byte instructions whereever possible. We can assume the
constant isn't loadable with any of ldi, ld24, or seth. */
/* See if we can load a 24 bit unsigned value and invert it. */
if (UINT24_P (~ val))
{
emit_insn (gen_movsi (operands[0], GEN_INT (~ val)));
emit_insn (gen_one_cmplsi2 (operands[0], operands[0]));
DONE;
}
/* See if we can load a 24 bit unsigned value and shift it into place.
0x01fffffe is just beyond ld24's range. */
for (shift = 1, tmp = 0x01fffffe;
shift < 8;
++shift, tmp <<= 1)
{
if ((val & ~tmp) == 0)
{
emit_insn (gen_movsi (operands[0], GEN_INT (val >> shift)));
emit_insn (gen_ashlsi3 (operands[0], operands[0], GEN_INT (shift)));
DONE;
}
}
/* Can't use any two byte insn, fall back to seth/or3. */
operands[2] = GEN_INT ((val) & 0xffff0000);
operands[3] = GEN_INT ((val) & 0xffff);
}")
;; Small data area support.
;; The address of _SDA_BASE_ is loaded into a register and all objects in
;; the small data area are indexed off that. This is done for each reference
;; but cse will clean things up for us. We let the compiler choose the
;; register to use so we needn't allocate (and maybe even fix) a special
;; register to use. Since the load and store insns have a 16 bit offset the
;; total size of the data area can be 64K. However, if the data area lives
;; above 16M (24 bits), _SDA_BASE_ will have to be loaded with seth/add3 which
;; would then yield 3 instructions to reference an object [though there would
;; be no net loss if two or more objects were referenced]. The 3 insns can be
;; reduced back to 2 if the size of the small data area were reduced to 32K
;; [then seth + ld/st would work for any object in the area]. Doing this
;; would require special handling of _SDA_BASE_ (its value would be
;; (.sdata + 32K) & 0xffff0000) and reloc computations would be different
;; [I think]. What to do about this is defered until later and for now we
;; require .sdata to be in the first 16M.
(define_expand "movsi_sda"
[(set (match_dup 2)
(unspec [(const_int 0)] 2))
(set (match_operand:SI 0 "register_operand" "")
(lo_sum:SI (match_dup 2)
(match_operand:SI 1 "small_data_operand" "")))]
""
"
{
if (reload_in_progress || reload_completed)
operands[2] = operands[0];
else
operands[2] = gen_reg_rtx (SImode);
}")
(define_insn "*load_sda_base"
[(set (match_operand:SI 0 "register_operand" "=r")
(unspec [(const_int 0)] 2))]
""
"ld24 %0,#_SDA_BASE_"
[(set_attr "type" "move4")])
;; 32 bit address support.
(define_expand "movsi_addr32"
[(set (match_dup 2)
; addr32_operand isn't used because it's too restrictive,
; seth_add3_operand is more general and thus safer.
(high:SI (match_operand:SI 1 "seth_add3_operand" "")))
(set (match_operand:SI 0 "register_operand" "")
(lo_sum:SI (match_dup 2) (match_dup 1)))]
""
"
{
if (reload_in_progress || reload_completed)
operands[2] = operands[0];
else
operands[2] = gen_reg_rtx (SImode);
}")
(define_insn "set_hi_si"
[(set (match_operand:SI 0 "register_operand" "=r")
(high:SI (match_operand 1 "symbolic_operand" "")))]
""
"seth %0,%#shigh(%1)"
[(set_attr "type" "move4")])
(define_insn "lo_sum_si"
[(set (match_operand:SI 0 "register_operand" "=r")
(lo_sum:SI (match_operand:SI 1 "register_operand" "r")
(match_operand:SI 2 "immediate_operand" "in")))]
""
"add3 %0,%1,%#%B2"
[(set_attr "length" "4")])
(define_expand "movdi"
[(set (match_operand:DI 0 "general_operand" "")
(match_operand:DI 1 "general_operand" ""))]
""
"
{
/* Everything except mem = const or mem = mem can be done easily. */
if (GET_CODE (operands[0]) == MEM)
operands[1] = force_reg (DImode, operands[1]);
if (CONSTANT_P (operands[1])
&& ! easy_di_const (operands[1]))
{
rtx mem = force_const_mem (DImode, operands[1]);
rtx reg = ((reload_in_progress || reload_completed)
? copy_to_suggested_reg (XEXP (mem, 0),
gen_rtx (REG, Pmode, REGNO (operands[0])),
Pmode)
: force_reg (Pmode, XEXP (mem, 0)));
operands[1] = change_address (mem, DImode, reg);
}
}")
(define_insn "*movdi_insn"
[(set (match_operand:DI 0 "move_dest_operand" "=r,r,r,m")
(match_operand:DI 1 "move_double_src_operand" "r,nG,m,r"))]
"register_operand (operands[0], DImode) || register_operand (operands[1], DImode)"
"*
{
switch (which_alternative)
{
case 0 :
/* We normally copy the low-numbered register first. However, if
the first register operand 0 is the same as the second register of
operand 1, we must copy in the opposite order. */
if (REGNO (operands[0]) == REGNO (operands[1]) + 1)
return \"mv %R0,%R1\;mv %0,%1\";
else
return \"mv %0,%1\;mv %R0,%R1\";
case 1 :
return \"#\";
case 2 :
/* If the low-address word is used in the address, we must load it
last. Otherwise, load it first. Note that we cannot have
auto-increment in that case since the address register is known to be
dead. */
if (refers_to_regno_p (REGNO (operands[0]), REGNO (operands[0]) + 1,
operands [1], 0))
{
return \"ld %R0,%R1\;ld %0,%1\";
}
else
{
/* Try to use auto-inc addressing if we can. */
if (GET_CODE (XEXP (operands[1], 0)) == REG
&& dead_or_set_p (insn, XEXP (operands[1], 0)))
{
operands[1] = XEXP (operands[1], 0);
return \"ld %0,@%1+\;ld %R0,@%1\";
}
return \"ld %0,%1\;ld %R0,%R1\";
}
case 3 :
/* Try to use auto-inc addressing if we can. */
if (GET_CODE (XEXP (operands[0], 0)) == REG
&& dead_or_set_p (insn, XEXP (operands[0], 0)))
{
operands[0] = XEXP (operands[0], 0);
return \"st %1,@%0\;st %R1,@+%0\";
}
return \"st %1,%0\;st %R1,%R0\";
}
}"
[(set_attr "type" "multi,multi,multi,multi")
(set_attr "length" "4,4,6,6")])
(define_split
[(set (match_operand:DI 0 "register_operand" "")
(match_operand:DI 1 "const_double_operand" ""))]
"reload_completed"
[(set (match_dup 2) (match_dup 4))
(set (match_dup 3) (match_dup 5))]
"
{
operands[2] = gen_rtx (SUBREG, SImode, operands[0], WORDS_BIG_ENDIAN == 0);
operands[3] = gen_rtx (SUBREG, SImode, operands[0], WORDS_BIG_ENDIAN != 0);
split_double (operands[1], operands + 4, operands + 5);
}")
;; Floating point move insns.
(define_expand "movsf"
[(set (match_operand:SF 0 "general_operand" "")
(match_operand:SF 1 "general_operand" ""))]
""
"
{
/* Everything except mem = const or mem = mem can be done easily. */
if (GET_CODE (operands[0]) == MEM)
operands[1] = force_reg (SFmode, operands[1]);
}")
(define_insn "*movsf_insn"
[(set (match_operand:SF 0 "move_dest_operand" "=r,r,r,m")
(match_operand:SF 1 "move_src_operand" "r,F,m,r"))]
"register_operand (operands[0], SFmode) || register_operand (operands[1], SFmode)"
"*
{
switch (which_alternative)
{
case 0 :
return \"mv %0,%1\";
case 1 :
{
REAL_VALUE_TYPE r;
long l;
REAL_VALUE_FROM_CONST_DOUBLE (r, operands[1]);
REAL_VALUE_TO_TARGET_SINGLE (r, l);
operands[1] = GEN_INT (l);
if (l == 0)
return \"ldi %0,%#0\";
if ((l & 0xffff) == 0)
return \"seth %0,%#%T1\";
else
return \"seth %0,%#%T1\;or3 %0,%0,%#%B1\";
}
case 2 :
return \"ld %0,%1\";
case 3 :
return \"st %1,%0\";
}
}"
;; ??? Length of alternative 1 is either 2, 4 or 8.
[(set_attr "type" "move,multi,load,store")])
(define_expand "movdf"
[(set (match_operand:DF 0 "general_operand" "")
(match_operand:DF 1 "general_operand" ""))]
""
"
{
/* Everything except mem = const or mem = mem can be done easily. */
if (GET_CODE (operands[0]) == MEM)
operands[1] = force_reg (DFmode, operands[1]);
if (GET_CODE (operands[1]) == CONST_DOUBLE
&& ! easy_df_const (operands[1]))
{
rtx mem = force_const_mem (DFmode, operands[1]);
rtx reg = ((reload_in_progress || reload_completed)
? copy_to_suggested_reg (XEXP (mem, 0),
gen_rtx (REG, Pmode, REGNO (operands[0])),
Pmode)
: force_reg (Pmode, XEXP (mem, 0)));
operands[1] = change_address (mem, DFmode, reg);
}
}")
(define_insn "*movdf_insn"
[(set (match_operand:DF 0 "move_dest_operand" "=r,r,r,m")
(match_operand:DF 1 "move_double_src_operand" "r,H,m,r"))]
"register_operand (operands[0], DFmode) || register_operand (operands[1], DFmode)"
"*
{
switch (which_alternative)
{
case 0 :
/* We normally copy the low-numbered register first. However, if
the first register operand 0 is the same as the second register of
operand 1, we must copy in the opposite order. */
if (REGNO (operands[0]) == REGNO (operands[1]) + 1)
return \"mv %R0,%R1\;mv %0,%1\";
else
return \"mv %0,%1\;mv %R0,%R1\";
case 1 :
{
REAL_VALUE_TYPE r;
long l[2];
REAL_VALUE_FROM_CONST_DOUBLE (r, operands[1]);
REAL_VALUE_TO_TARGET_DOUBLE (r, l);
operands[1] = GEN_INT (l[0]);
if (l[0] == 0 && l[1] == 0)
return \"ldi %0,%#0\;ldi %R0,%#0\";
else if (l[1] != 0)
abort ();
else if ((l[0] & 0xffff) == 0)
return \"seth %0,%#%T1\;ldi %R0,%#0\";
else
abort ();
}
case 2 :
/* If the low-address word is used in the address, we must load it
last. Otherwise, load it first. Note that we cannot have
auto-increment in that case since the address register is known to be
dead. */
if (refers_to_regno_p (REGNO (operands[0]), REGNO (operands[0]) + 1,
operands [1], 0))
{
return \"ld %R0,%R1\;ld %0,%1\";
}
else
{
/* Try to use auto-inc addressing if we can. */
if (GET_CODE (XEXP (operands[1], 0)) == REG
&& dead_or_set_p (insn, XEXP (operands[1], 0)))
{
operands[1] = XEXP (operands[1], 0);
return \"ld %0,@%1+\;ld %R0,@%1\";
}
return \"ld %0,%1\;ld %R0,%R1\";
}
case 3 :
/* Try to use auto-inc addressing if we can. */
if (GET_CODE (XEXP (operands[0], 0)) == REG
&& dead_or_set_p (insn, XEXP (operands[0], 0)))
{
operands[0] = XEXP (operands[0], 0);
return \"st %1,@%0\;st %R1,@+%0\";
}
return \"st %1,%0\;st %R1,%R0\";
}
}"
[(set_attr "type" "multi,multi,multi,multi")
(set_attr "length" "4,6,6,6")])
;; Zero extension instructions.
(define_insn "zero_extendqihi2"
[(set (match_operand:HI 0 "register_operand" "=r,r")
(zero_extend:HI (match_operand:QI 1 "nonimmediate_operand" "r,m")))]
""
"@
and3 %0,%1,%#255
ldub %0,%1"
[(set_attr "type" "unary,load")
(set_attr "length" "4,*")])
(define_insn "zero_extendqisi2"
[(set (match_operand:SI 0 "register_operand" "=r,r")
(zero_extend:SI (match_operand:QI 1 "nonimmediate_operand" "r,m")))]
""
"@
and3 %0,%1,%#255
ldub %0,%1"
[(set_attr "type" "unary,load")
(set_attr "length" "4,*")])
(define_insn "zero_extendhisi2"
[(set (match_operand:SI 0 "register_operand" "=r,r")
(zero_extend:SI (match_operand:HI 1 "nonimmediate_operand" "r,m")))]
""
"@
and3 %0,%1,%#65535
lduh %0,%1"
[(set_attr "type" "unary,load")
(set_attr "length" "4,*")])
;; Sign extension instructions.
;; FIXME: See v850.md.
;; These patterns originally accepted general_operands, however, slightly
;; better code is generated by only accepting register_operands, and then
;; letting combine generate the lds[hb] insns.
;; [This comment copied from sparc.md, I think.]
(define_expand "extendqihi2"
[(set (match_operand:HI 0 "register_operand" "")
(sign_extend:HI (match_operand:QI 1 "register_operand" "")))]
""
"
{
rtx temp = gen_reg_rtx (SImode);
rtx shift_24 = gen_rtx (CONST_INT, VOIDmode, 24);
int op1_subword = 0;
int op0_subword = 0;
if (GET_CODE (operand1) == SUBREG)
{
op1_subword = SUBREG_WORD (operand1);
operand1 = XEXP (operand1, 0);
}
if (GET_CODE (operand0) == SUBREG)
{
op0_subword = SUBREG_WORD (operand0);
operand0 = XEXP (operand0, 0);
}
emit_insn (gen_ashlsi3 (temp, gen_rtx (SUBREG, SImode, operand1,
op1_subword),
shift_24));
if (GET_MODE (operand0) != SImode)
operand0 = gen_rtx (SUBREG, SImode, operand0, op0_subword);
emit_insn (gen_ashrsi3 (operand0, temp, shift_24));
DONE;
}")
(define_insn "*sign_extendqihi2_insn"
[(set (match_operand:HI 0 "register_operand" "=r")
(sign_extend:HI (match_operand:QI 1 "memory_operand" "m")))]
""
"ldb %0,%1"
[(set_attr "type" "load")])
(define_expand "extendqisi2"
[(set (match_operand:SI 0 "register_operand" "")
(sign_extend:SI (match_operand:QI 1 "register_operand" "")))]
""
"
{
rtx temp = gen_reg_rtx (SImode);
rtx shift_24 = gen_rtx (CONST_INT, VOIDmode, 24);
int op1_subword = 0;
if (GET_CODE (operand1) == SUBREG)
{
op1_subword = SUBREG_WORD (operand1);
operand1 = XEXP (operand1, 0);
}
emit_insn (gen_ashlsi3 (temp, gen_rtx (SUBREG, SImode, operand1,
op1_subword),
shift_24));
emit_insn (gen_ashrsi3 (operand0, temp, shift_24));
DONE;
}")
(define_insn "*sign_extendqisi2_insn"
[(set (match_operand:SI 0 "register_operand" "=r")
(sign_extend:SI (match_operand:QI 1 "memory_operand" "m")))]
""
"ldb %0,%1"
[(set_attr "type" "load")])
(define_expand "extendhisi2"
[(set (match_operand:SI 0 "register_operand" "")
(sign_extend:SI (match_operand:HI 1 "register_operand" "")))]
""
"
{
rtx temp = gen_reg_rtx (SImode);
rtx shift_16 = gen_rtx (CONST_INT, VOIDmode, 16);
int op1_subword = 0;
if (GET_CODE (operand1) == SUBREG)
{
op1_subword = SUBREG_WORD (operand1);
operand1 = XEXP (operand1, 0);
}
emit_insn (gen_ashlsi3 (temp, gen_rtx (SUBREG, SImode, operand1,
op1_subword),
shift_16));
emit_insn (gen_ashrsi3 (operand0, temp, shift_16));
DONE;
}")
(define_insn "*sign_extendhisi2_insn"
[(set (match_operand:SI 0 "register_operand" "=r")
(sign_extend:SI (match_operand:HI 1 "memory_operand" "m")))]
""
"ldh %0,%1"
[(set_attr "type" "load")])
;; Arithmetic instructions.
; ??? Adding an alternative to split add3 of small constants into two
; insns yields better instruction packing but slower code. Adds of small
; values is done a lot.
(define_insn "addsi3"
[(set (match_operand:SI 0 "register_operand" "=r,r,r")
(plus:SI (match_operand:SI 1 "register_operand" "%0,0,r")
(match_operand:SI 2 "nonmemory_operand" "r,I,J")))]
""
"@
add %0,%2
addi %0,%#%2
add3 %0,%1,%#%2"
[(set_attr "type" "binary")
(set_attr "length" "2,2,4")])
;(define_split
; [(set (match_operand:SI 0 "register_operand" "")
; (plus:SI (match_operand:SI 1 "register_operand" "")
; (match_operand:SI 2 "int8_operand" "")))]
; "reload_completed
; && REGNO (operands[0]) != REGNO (operands[1])
; && INT8_P (INTVAL (operands[2]))
; && INTVAL (operands[2]) != 0"
; [(set (match_dup 0) (match_dup 1))
; (set (match_dup 0) (plus:SI (match_dup 0) (match_dup 2)))]
; "")
(define_insn "adddi3"
[(set (match_operand:DI 0 "register_operand" "=r")
(plus:DI (match_operand:DI 1 "register_operand" "%0")
(match_operand:DI 2 "register_operand" "r")))
(clobber (reg:CC 17))]
""
"*
{
/* ??? The cmp clears the condition bit. Can we speed up somehow? */
return \"cmp %L0,%L0\;addx %L0,%L2\;addx %H0,%H2\";
}"
[(set_attr "type" "binary")
(set_attr "length" "6")])
(define_insn "subsi3"
[(set (match_operand:SI 0 "register_operand" "=r")
(minus:SI (match_operand:SI 1 "register_operand" "0")
(match_operand:SI 2 "register_operand" "r")))]
""
"sub %0,%2"
[(set_attr "type" "binary")])
(define_insn "subdi3"
[(set (match_operand:DI 0 "register_operand" "=r")
(minus:DI (match_operand:DI 1 "register_operand" "0")
(match_operand:DI 2 "register_operand" "r")))
(clobber (reg:CC 17))]
""
"*
{
/* ??? The cmp clears the condition bit. Can we speed up somehow? */
return \"cmp %L0,%L0\;subx %L0,%L2\;subx %H0,%H2\";
}"
[(set_attr "type" "binary")
(set_attr "length" "6")])
; Multiply/Divide instructions.
(define_insn "mulhisi3"
[(set (match_operand:SI 0 "register_operand" "=r")
(mult:SI (sign_extend:SI (match_operand:HI 1 "register_operand" "r"))
(sign_extend:SI (match_operand:HI 2 "register_operand" "r"))))]
""
"mullo %1,%2\;mvfacmi %0"
[(set_attr "type" "mul")
(set_attr "length" "4")])
(define_insn "mulsi3"
[(set (match_operand:SI 0 "register_operand" "=r")
(mult:SI (match_operand:SI 1 "register_operand" "%0")
(match_operand:SI 2 "register_operand" "r")))]
""
"mul %0,%2"
[(set_attr "type" "mul")])
(define_insn "divsi3"
[(set (match_operand:SI 0 "register_operand" "=r")
(div:SI (match_operand:SI 1 "register_operand" "0")
(match_operand:SI 2 "register_operand" "r")))]
""
"div %0,%2"
[(set_attr "type" "div")])
(define_insn "udivsi3"
[(set (match_operand:SI 0 "register_operand" "=r")
(udiv:SI (match_operand:SI 1 "register_operand" "0")
(match_operand:SI 2 "register_operand" "r")))]
""
"divu %0,%2"
[(set_attr "type" "div")])
(define_insn "modsi3"
[(set (match_operand:SI 0 "register_operand" "=r")
(mod:SI (match_operand:SI 1 "register_operand" "0")
(match_operand:SI 2 "register_operand" "r")))]
""
"rem %0,%2"
[(set_attr "type" "div")])
(define_insn "umodsi3"
[(set (match_operand:SI 0 "register_operand" "=r")
(umod:SI (match_operand:SI 1 "register_operand" "0")
(match_operand:SI 2 "register_operand" "r")))]
""
"remu %0,%2"
[(set_attr "type" "div")])
;; Boolean instructions.
;;
;; We don't define the DImode versions as expand_binop does a good enough job.
;; And if it doesn't it should be fixed.
(define_insn "andsi3"
[(set (match_operand:SI 0 "register_operand" "=r,r")
(and:SI (match_operand:SI 1 "register_operand" "%0,r")
(match_operand:SI 2 "nonmemory_operand" "r,K")))]
""
"@
and %0,%2
and3 %0,%1,%#%2 ; %X2"
[(set_attr "type" "binary")])
(define_insn "iorsi3"
[(set (match_operand:SI 0 "register_operand" "=r,r")
(ior:SI (match_operand:SI 1 "register_operand" "%0,r")
(match_operand:SI 2 "nonmemory_operand" "r,K")))]
""
"@
or %0,%2
or3 %0,%1,%#%2 ; %X2"
[(set_attr "type" "binary")])
(define_insn "xorsi3"
[(set (match_operand:SI 0 "register_operand" "=r,r")
(xor:SI (match_operand:SI 1 "register_operand" "%0,r")
(match_operand:SI 2 "nonmemory_operand" "r,K")))]
""
"@
xor %0,%2
xor3 %0,%1,%#%2 ; %X2"
[(set_attr "type" "binary")])
(define_insn "negsi2"
[(set (match_operand:SI 0 "register_operand" "=r")
(neg:SI (match_operand:SI 1 "register_operand" "r")))]
""
"neg %0,%1"
[(set_attr "type" "unary")])
(define_insn "one_cmplsi2"
[(set (match_operand:SI 0 "register_operand" "=r")
(not:SI (match_operand:SI 1 "register_operand" "r")))]
""
"not %0,%1"
[(set_attr "type" "unary")])
;; Shift instructions.
(define_insn "ashlsi3"
[(set (match_operand:SI 0 "register_operand" "=r,r,r")
(ashift:SI (match_operand:SI 1 "register_operand" "0,0,r")
(match_operand:SI 2 "reg_or_uint16_operand" "r,O,K")))]
""
"@
sll %0,%2
slli %0,%#%2
sll3 %0,%1,%#%2"
[(set_attr "type" "shift")
(set_attr "length" "2,2,4")])
(define_insn "ashrsi3"
[(set (match_operand:SI 0 "register_operand" "=r,r,r")
(ashiftrt:SI (match_operand:SI 1 "register_operand" "0,0,r")
(match_operand:SI 2 "reg_or_uint16_operand" "r,O,K")))]
""
"@
sra %0,%2
srai %0,%#%2
sra3 %0,%1,%#%2"
[(set_attr "type" "shift")
(set_attr "length" "2,2,4")])
(define_insn "lshrsi3"
[(set (match_operand:SI 0 "register_operand" "=r,r,r")
(lshiftrt:SI (match_operand:SI 1 "register_operand" "0,0,r")
(match_operand:SI 2 "reg_or_uint16_operand" "r,O,K")))]
""
"@
srl %0,%2
srli %0,%#%2
srl3 %0,%1,%#%2"
[(set_attr "type" "shift")
(set_attr "length" "2,2,4")])
;; Compare instructions.
;; This controls RTL generation and register allocation.
;; We generate RTL for comparisons and branches by having the cmpxx
;; patterns store away the operands. Then the bcc patterns
;; emit RTL for both the compare and the branch.
;;
;; On the m32r it is more efficient to use the bxxz instructions and
;; thus merge the compare and branch into one instruction, so they are
;; prefered.
(define_expand "cmpsi"
[(set (reg:CC 17)
(compare:CC (match_operand:SI 0 "register_operand" "")
(match_operand:SI 1 "nonmemory_operand" "")))]
""
"
{
m32r_compare_op0 = operands[0];
m32r_compare_op1 = operands[1];
DONE;
}")
;; The cmp_xxx_insn patterns set the condition bit to the result of the
;; comparison. There isn't a "compare equal" instruction so cmp_eqsi_insn
;; is quite inefficient. However, it is rarely used.
(define_insn "cmp_eqsi_insn"
[(set (reg:CC 17)
(eq:CC (match_operand:SI 0 "register_operand" "r,r")
(match_operand:SI 1 "reg_or_cmp_int16_operand" "r,P")))
(clobber (match_scratch:SI 2 "=&r,&r"))]
"TARGET_OLD_COMPARE"
"@
mv %2,%0\;sub %2,%1\;cmpui %2,#1
add3 %2,%0,%#%N1\;cmpui %2,#1"
[(set_attr "type" "compare,compare")
(set_attr "length" "8,8")])
(define_insn "cmp_ltsi_insn"
[(set (reg:CC 17)
(lt:CC (match_operand:SI 0 "register_operand" "r,r")
(match_operand:SI 1 "reg_or_int16_operand" "r,J")))]
""
"@
cmp %0,%1
cmpi %0,%#%1"
[(set_attr "type" "compare")])
(define_insn "cmp_ltusi_insn"
[(set (reg:CC 17)
(ltu:CC (match_operand:SI 0 "register_operand" "r,r")
(match_operand:SI 1 "reg_or_uint16_operand" "r,K")))]
""
"@
cmpu %0,%1
cmpui %0,%#%1"
[(set_attr "type" "compare")])
;; reg == small constant comparisons are best handled by putting the result
;; of the comparison in a tmp reg and then using beqz/bnez.
;; ??? The result register doesn't contain 0/STORE_FLAG_VALUE,
;; it contains 0/non-zero.
(define_insn "cmp_ne_small_const_insn"
[(set (match_operand:SI 0 "register_operand" "=r")
(ne:SI (match_operand:SI 1 "register_operand" "r")
(match_operand:SI 2 "cmp_int16_operand" "P")))]
""
"add3 %0,%1,%#%N2"
[(set_attr "type" "compare")
(set_attr "length" "4")])
;; These control RTL generation for conditional jump insns.
(define_expand "beq"
[(set (pc)
(if_then_else (match_dup 1)
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"
{
operands[1] = gen_compare (EQ, m32r_compare_op0, m32r_compare_op1);
}")
(define_expand "bne"
[(set (pc)
(if_then_else (match_dup 1)
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"
{
operands[1] = gen_compare (NE, m32r_compare_op0, m32r_compare_op1);
}")
(define_expand "bgt"
[(set (pc)
(if_then_else (match_dup 1)
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"
{
operands[1] = gen_compare (GT, m32r_compare_op0, m32r_compare_op1);
}")
(define_expand "ble"
[(set (pc)
(if_then_else (match_dup 1)
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"
{
operands[1] = gen_compare (LE, m32r_compare_op0, m32r_compare_op1);
}")
(define_expand "bge"
[(set (pc)
(if_then_else (match_dup 1)
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"
{
operands[1] = gen_compare (GE, m32r_compare_op0, m32r_compare_op1);
}")
(define_expand "blt"
[(set (pc)
(if_then_else (match_dup 1)
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"
{
operands[1] = gen_compare (LT, m32r_compare_op0, m32r_compare_op1);
}")
(define_expand "bgtu"
[(set (pc)
(if_then_else (match_dup 1)
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"
{
operands[1] = gen_compare (GTU, m32r_compare_op0, m32r_compare_op1);
}")
(define_expand "bleu"
[(set (pc)
(if_then_else (match_dup 1)
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"
{
operands[1] = gen_compare (LEU, m32r_compare_op0, m32r_compare_op1);
}")
(define_expand "bgeu"
[(set (pc)
(if_then_else (match_dup 1)
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"
{
operands[1] = gen_compare (GEU, m32r_compare_op0, m32r_compare_op1);
}")
(define_expand "bltu"
[(set (pc)
(if_then_else (match_dup 1)
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"
{
operands[1] = gen_compare (LTU, m32r_compare_op0, m32r_compare_op1);
}")
;; Now match both normal and inverted jump.
(define_insn "*branch_insn"
[(set (pc)
(if_then_else (match_operator 1 "eqne_comparison_operator"
[(reg 17) (const_int 0)])
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"*
{
if (GET_CODE (operands[1]) == NE)
return \"bc %l0\";
else
return \"bnc %l0\";
}"
[(set_attr "type" "branch")
; We use 400/800 instead of 512,1024 to account for inaccurate insn
; lengths and insn alignments that are complex to track.
; It's not important that we be hyper-precise here. It may be more
; important blah blah blah when the chip supports parallel execution
; blah blah blah but until then blah blah blah this is simple and
; suffices.
(set (attr "length") (if_then_else (ltu (plus (minus (match_dup 0) (pc))
(const_int 400))
(const_int 800))
(const_int 2)
(const_int 4)))])
(define_insn "*rev_branch_insn"
[(set (pc)
(if_then_else (match_operator 1 "eqne_comparison_operator"
[(reg 17) (const_int 0)])
(pc)
(label_ref (match_operand 0 "" ""))))]
;"REVERSIBLE_CC_MODE (GET_MODE (XEXP (operands[1], 0)))"
""
"*
{
if (GET_CODE (operands[1]) == EQ)
return \"bc %l0\";
else
return \"bnc %l0\";
}"
[(set_attr "type" "branch")
; We use 400/800 instead of 512,1024 to account for inaccurate insn
; lengths and insn alignments that are complex to track.
; It's not important that we be hyper-precise here. It may be more
; important blah blah blah when the chip supports parallel execution
; blah blah blah but until then blah blah blah this is simple and
; suffices.
(set (attr "length") (if_then_else (ltu (plus (minus (match_dup 0) (pc))
(const_int 400))
(const_int 800))
(const_int 2)
(const_int 4)))])
; reg/reg compare and branch insns
(define_insn "*reg_branch_insn"
[(set (pc)
(if_then_else (match_operator 1 "eqne_comparison_operator"
[(match_operand:SI 2 "register_operand" "r")
(match_operand:SI 3 "register_operand" "r")])
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"*
{
/* Is branch target reachable with beq/bne? */
if (get_attr_length (insn) == 4)
{
if (GET_CODE (operands[1]) == EQ)
return \"beq %2,%3,%l0\";
else
return \"bne %2,%3,%l0\";
}
else
{
if (GET_CODE (operands[1]) == EQ)
return \"bne %2,%3,1f\;bra %l0\;1:\";
else
return \"beq %2,%3,1f\;bra %l0\;1:\";
}
}"
[(set_attr "type" "branch")
; We use 25000/50000 instead of 32768/65536 to account for slot filling
; which is complex to track and inaccurate length specs.
(set (attr "length") (if_then_else (ltu (plus (minus (match_dup 0) (pc))
(const_int 25000))
(const_int 50000))
(const_int 4)
(const_int 8)))])
(define_insn "*rev_reg_branch_insn"
[(set (pc)
(if_then_else (match_operator 1 "eqne_comparison_operator"
[(match_operand:SI 2 "register_operand" "r")
(match_operand:SI 3 "register_operand" "r")])
(pc)
(label_ref (match_operand 0 "" ""))))]
""
"*
{
/* Is branch target reachable with beq/bne? */
if (get_attr_length (insn) == 4)
{
if (GET_CODE (operands[1]) == NE)
return \"beq %2,%3,%l0\";
else
return \"bne %2,%3,%l0\";
}
else
{
if (GET_CODE (operands[1]) == NE)
return \"bne %2,%3,1f\;bra %l0\;1:\";
else
return \"beq %2,%3,1f\;bra %l0\;1:\";
}
}"
[(set_attr "type" "branch")
; We use 25000/50000 instead of 32768/65536 to account for slot filling
; which is complex to track and inaccurate length specs.
(set (attr "length") (if_then_else (ltu (plus (minus (match_dup 0) (pc))
(const_int 25000))
(const_int 50000))
(const_int 4)
(const_int 8)))])
; reg/zero compare and branch insns
(define_insn "*zero_branch_insn"
[(set (pc)
(if_then_else (match_operator 1 "signed_comparison_operator"
[(match_operand:SI 2 "register_operand" "r")
(const_int 0)])
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"*
{
char *br,*invbr;
char asmtext[40];
switch (GET_CODE (operands[1]))
{
case EQ : br = \"eq\"; invbr = \"ne\"; break;
case NE : br = \"ne\"; invbr = \"eq\"; break;
case LE : br = \"le\"; invbr = \"gt\"; break;
case GT : br = \"gt\"; invbr = \"le\"; break;
case LT : br = \"lt\"; invbr = \"ge\"; break;
case GE : br = \"ge\"; invbr = \"lt\"; break;
}
/* Is branch target reachable with bxxz? */
if (get_attr_length (insn) == 4)
{
sprintf (asmtext, \"b%sz %%2,%%l0\", br);
output_asm_insn (asmtext, operands);
}
else
{
sprintf (asmtext, \"b%sz %%2,1f\;bra %%l0\;1:\", invbr);
output_asm_insn (asmtext, operands);
}
return \"\";
}"
[(set_attr "type" "branch")
; We use 25000/50000 instead of 32768/65536 to account for slot filling
; which is complex to track and inaccurate length specs.
(set (attr "length") (if_then_else (ltu (plus (minus (match_dup 0) (pc))
(const_int 25000))
(const_int 50000))
(const_int 4)
(const_int 8)))])
(define_insn "*rev_zero_branch_insn"
[(set (pc)
(if_then_else (match_operator 1 "eqne_comparison_operator"
[(match_operand:SI 2 "register_operand" "r")
(const_int 0)])
(pc)
(label_ref (match_operand 0 "" ""))))]
""
"*
{
char *br,*invbr;
char asmtext[40];
switch (GET_CODE (operands[1]))
{
case EQ : br = \"eq\"; invbr = \"ne\"; break;
case NE : br = \"ne\"; invbr = \"eq\"; break;
case LE : br = \"le\"; invbr = \"gt\"; break;
case GT : br = \"gt\"; invbr = \"le\"; break;
case LT : br = \"lt\"; invbr = \"ge\"; break;
case GE : br = \"ge\"; invbr = \"lt\"; break;
}
/* Is branch target reachable with bxxz? */
if (get_attr_length (insn) == 4)
{
sprintf (asmtext, \"b%sz %%2,%%l0\", invbr);
output_asm_insn (asmtext, operands);
}
else
{
sprintf (asmtext, \"b%sz %%2,1f\;bra %%l0\;1:\", br);
output_asm_insn (asmtext, operands);
}
return \"\";
}"
[(set_attr "type" "branch")
; We use 25000/50000 instead of 32768/65536 to account for slot filling
; which is complex to track and inaccurate length specs.
(set (attr "length") (if_then_else (ltu (plus (minus (match_dup 0) (pc))
(const_int 25000))
(const_int 50000))
(const_int 4)
(const_int 8)))])
;; Unconditional and other jump instructions.
(define_insn "jump"
[(set (pc) (label_ref (match_operand 0 "" "")))]
""
"bra %l0"
[(set_attr "type" "uncond_branch")
(set (attr "length") (if_then_else (ltu (plus (minus (match_dup 0) (pc))
(const_int 400))
(const_int 800))
(const_int 2)
(const_int 4)))])
(define_insn "indirect_jump"
[(set (pc) (match_operand:SI 0 "address_operand" "p"))]
""
"jmp %a0"
[(set_attr "type" "uncond_branch")
(set_attr "length" "2")])
(define_insn "tablejump"
[(set (pc) (match_operand:SI 0 "address_operand" "p"))
(use (label_ref (match_operand 1 "" "")))]
""
"jmp %a0"
[(set_attr "type" "uncond_branch")
(set_attr "length" "2")])
(define_expand "call"
;; operands[1] is stack_size_rtx
;; operands[2] is next_arg_register
[(parallel [(call (match_operand:SI 0 "call_operand" "")
(match_operand 1 "" ""))
(clobber (reg:SI 14))])]
""
"")
(define_insn "*call_via_reg"
[(call (mem:SI (match_operand:SI 0 "register_operand" "r"))
(match_operand 1 "" ""))
(clobber (reg:SI 14))]
""
"jl %0"
[(set_attr "type" "call")
(set_attr "length" "2")])
(define_insn "*call_via_label"
[(call (mem:SI (match_operand:SI 0 "call_address_operand" ""))
(match_operand 1 "" ""))
(clobber (reg:SI 14))]
""
"*
{
int call26_p = call26_operand (operands[0], FUNCTION_MODE);
if (! call26_p)
{
/* We may not be able to reach with a `bl' insn so punt and leave it to
the linker.
We do this here, rather than doing a force_reg in the define_expand
so these insns won't be separated, say by scheduling, thus simplifying
the linker. */
return \"seth r14,%T0\;add3 r14,r14,%B0\;jl r14\";
}
else
return \"bl %0\";
}"
[(set_attr "type" "call")
(set (attr "length")
(if_then_else (eq (symbol_ref "call26_operand (operands[0], FUNCTION_MODE)")
(const_int 0))
(const_int 12) ; 10 + 2 for nop filler
; The return address must be on a 4 byte boundary so
; there's no point in using a value of 2 here. A 2 byte
; insn may go in the left slot but we currently can't
; use such knowledge.
(const_int 4)))])
(define_expand "call_value"
;; operand 2 is stack_size_rtx
;; operand 3 is next_arg_register
[(parallel [(set (match_operand 0 "register_operand" "=r")
(call (match_operand:SI 1 "call_operand" "")
(match_operand 2 "" "")))
(clobber (reg:SI 14))])]
""
"")
(define_insn "*call_value_via_reg"
[(set (match_operand 0 "register_operand" "=r")
(call (mem:SI (match_operand:SI 1 "register_operand" "r"))
(match_operand 2 "" "")))
(clobber (reg:SI 14))]
""
"jl %1"
[(set_attr "type" "call")
(set_attr "length" "2")])
(define_insn "*call_value_via_label"
[(set (match_operand 0 "register_operand" "=r")
(call (mem:SI (match_operand:SI 1 "call_address_operand" ""))
(match_operand 2 "" "")))
(clobber (reg:SI 14))]
""
"*
{
int call26_p = call26_operand (operands[1], FUNCTION_MODE);
if (! call26_p)
{
/* We may not be able to reach with a `bl' insn so punt and leave it to
the linker.
We do this here, rather than doing a force_reg in the define_expand
so these insns won't be separated, say by scheduling, thus simplifying
the linker. */
return \"seth r14,%T1\;add3 r14,r14,%B1\;jl r14\";
}
else
return \"bl %1\";
}"
[(set_attr "type" "call")
(set (attr "length")
(if_then_else (eq (symbol_ref "call26_operand (operands[1], FUNCTION_MODE)")
(const_int 0))
(const_int 12) ; 10 + 2 for nop filler
; The return address must be on a 4 byte boundary so
; there's no point in using a value of 2 here. A 2 byte
; insn may go in the left slot but we currently can't
; use such knowledge.
(const_int 4)))])
(define_insn "nop"
[(const_int 0)]
""
"nop"
[(set_attr "type" "misc")
(set_attr "length" "2")])
;; UNSPEC_VOLATILE is considered to use and clobber all hard registers and
;; all of memory. This blocks insns from being moved across this point.
(define_insn "blockage"
[(unspec_volatile [(const_int 0)] 0)]
""
"")
;; Special pattern to flush the icache.
(define_insn "flush_icache"
[(unspec_volatile [(match_operand 0 "memory_operand" "m")] 0)]
""
"* return \"nop ; flush-icache\";"
[(set_attr "type" "misc")])
;; Split up troublesome insns for better scheduling.
;; Peepholes go at the end.
;; ??? Setting the type attribute may not be useful, but for completeness
;; we do it.
(define_peephole
[(set (mem:SI (plus:SI (match_operand:SI 0 "register_operand" "r")
(const_int 4)))
(match_operand:SI 1 "register_operand" "r"))]
"dead_or_set_p (insn, operands[0])"
"st %1,@+%0"
[(set_attr "type" "store")
(set_attr "length" "2")])