1781 lines
52 KiB
C
1781 lines
52 KiB
C
|
/* Evaluate expressions for GDB.
|
|||
|
Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995
|
|||
|
Free Software Foundation, Inc.
|
|||
|
|
|||
|
This file is part of GDB.
|
|||
|
|
|||
|
This program is free software; you can redistribute it and/or modify
|
|||
|
it under the terms of the GNU General Public License as published by
|
|||
|
the Free Software Foundation; either version 2 of the License, or
|
|||
|
(at your option) any later version.
|
|||
|
|
|||
|
This program is distributed in the hope that it will be useful,
|
|||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|||
|
GNU General Public License for more details.
|
|||
|
|
|||
|
You should have received a copy of the GNU General Public License
|
|||
|
along with this program; if not, write to the Free Software
|
|||
|
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
|
|||
|
|
|||
|
#include "defs.h"
|
|||
|
#include "gdb_string.h"
|
|||
|
#include "symtab.h"
|
|||
|
#include "gdbtypes.h"
|
|||
|
#include "value.h"
|
|||
|
#include "expression.h"
|
|||
|
#include "target.h"
|
|||
|
#include "frame.h"
|
|||
|
#include "demangle.h"
|
|||
|
#include "language.h" /* For CAST_IS_CONVERSION */
|
|||
|
#include "f-lang.h" /* for array bound stuff */
|
|||
|
|
|||
|
/* Prototypes for local functions. */
|
|||
|
|
|||
|
static value_ptr evaluate_subexp_for_sizeof PARAMS ((struct expression *,
|
|||
|
int *));
|
|||
|
|
|||
|
static value_ptr evaluate_subexp_for_address PARAMS ((struct expression *,
|
|||
|
int *, enum noside));
|
|||
|
|
|||
|
#ifdef __GNUC__
|
|||
|
inline
|
|||
|
#endif
|
|||
|
static value_ptr
|
|||
|
evaluate_subexp (expect_type, exp, pos, noside)
|
|||
|
struct type *expect_type;
|
|||
|
register struct expression *exp;
|
|||
|
register int *pos;
|
|||
|
enum noside noside;
|
|||
|
{
|
|||
|
return (*exp->language_defn->evaluate_exp) (expect_type, exp, pos, noside);
|
|||
|
}
|
|||
|
|
|||
|
/* Parse the string EXP as a C expression, evaluate it,
|
|||
|
and return the result as a number. */
|
|||
|
|
|||
|
CORE_ADDR
|
|||
|
parse_and_eval_address (exp)
|
|||
|
char *exp;
|
|||
|
{
|
|||
|
struct expression *expr = parse_expression (exp);
|
|||
|
register CORE_ADDR addr;
|
|||
|
register struct cleanup *old_chain =
|
|||
|
make_cleanup (free_current_contents, &expr);
|
|||
|
|
|||
|
addr = value_as_pointer (evaluate_expression (expr));
|
|||
|
do_cleanups (old_chain);
|
|||
|
return addr;
|
|||
|
}
|
|||
|
|
|||
|
/* Like parse_and_eval_address but takes a pointer to a char * variable
|
|||
|
and advanced that variable across the characters parsed. */
|
|||
|
|
|||
|
CORE_ADDR
|
|||
|
parse_and_eval_address_1 (expptr)
|
|||
|
char **expptr;
|
|||
|
{
|
|||
|
struct expression *expr = parse_exp_1 (expptr, (struct block *)0, 0);
|
|||
|
register CORE_ADDR addr;
|
|||
|
register struct cleanup *old_chain =
|
|||
|
make_cleanup (free_current_contents, &expr);
|
|||
|
|
|||
|
addr = value_as_pointer (evaluate_expression (expr));
|
|||
|
do_cleanups (old_chain);
|
|||
|
return addr;
|
|||
|
}
|
|||
|
|
|||
|
value_ptr
|
|||
|
parse_and_eval (exp)
|
|||
|
char *exp;
|
|||
|
{
|
|||
|
struct expression *expr = parse_expression (exp);
|
|||
|
register value_ptr val;
|
|||
|
register struct cleanup *old_chain
|
|||
|
= make_cleanup (free_current_contents, &expr);
|
|||
|
|
|||
|
val = evaluate_expression (expr);
|
|||
|
do_cleanups (old_chain);
|
|||
|
return val;
|
|||
|
}
|
|||
|
|
|||
|
/* Parse up to a comma (or to a closeparen)
|
|||
|
in the string EXPP as an expression, evaluate it, and return the value.
|
|||
|
EXPP is advanced to point to the comma. */
|
|||
|
|
|||
|
value_ptr
|
|||
|
parse_to_comma_and_eval (expp)
|
|||
|
char **expp;
|
|||
|
{
|
|||
|
struct expression *expr = parse_exp_1 (expp, (struct block *) 0, 1);
|
|||
|
register value_ptr val;
|
|||
|
register struct cleanup *old_chain
|
|||
|
= make_cleanup (free_current_contents, &expr);
|
|||
|
|
|||
|
val = evaluate_expression (expr);
|
|||
|
do_cleanups (old_chain);
|
|||
|
return val;
|
|||
|
}
|
|||
|
|
|||
|
/* Evaluate an expression in internal prefix form
|
|||
|
such as is constructed by parse.y.
|
|||
|
|
|||
|
See expression.h for info on the format of an expression. */
|
|||
|
|
|||
|
value_ptr
|
|||
|
evaluate_expression (exp)
|
|||
|
struct expression *exp;
|
|||
|
{
|
|||
|
int pc = 0;
|
|||
|
return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_NORMAL);
|
|||
|
}
|
|||
|
|
|||
|
/* Evaluate an expression, avoiding all memory references
|
|||
|
and getting a value whose type alone is correct. */
|
|||
|
|
|||
|
value_ptr
|
|||
|
evaluate_type (exp)
|
|||
|
struct expression *exp;
|
|||
|
{
|
|||
|
int pc = 0;
|
|||
|
return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_AVOID_SIDE_EFFECTS);
|
|||
|
}
|
|||
|
|
|||
|
/* If the next expression is an OP_LABELED, skips past it,
|
|||
|
returning the label. Otherwise, does nothing and returns NULL. */
|
|||
|
|
|||
|
static char*
|
|||
|
get_label (exp, pos)
|
|||
|
register struct expression *exp;
|
|||
|
int *pos;
|
|||
|
{
|
|||
|
if (exp->elts[*pos].opcode == OP_LABELED)
|
|||
|
{
|
|||
|
int pc = (*pos)++;
|
|||
|
char *name = &exp->elts[pc + 2].string;
|
|||
|
int tem = longest_to_int (exp->elts[pc + 1].longconst);
|
|||
|
(*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
|
|||
|
return name;
|
|||
|
}
|
|||
|
else
|
|||
|
return NULL;
|
|||
|
}
|
|||
|
|
|||
|
/* This function evaluates tupes (in Chill) or brace-initializers
|
|||
|
(in C/C++) for structure types. */
|
|||
|
|
|||
|
static value_ptr
|
|||
|
evaluate_struct_tuple (struct_val, exp, pos, noside, nargs)
|
|||
|
value_ptr struct_val;
|
|||
|
register struct expression *exp;
|
|||
|
register int *pos;
|
|||
|
enum noside noside;
|
|||
|
int nargs;
|
|||
|
{
|
|||
|
struct type *struct_type = check_typedef (VALUE_TYPE (struct_val));
|
|||
|
struct type *substruct_type = struct_type;
|
|||
|
struct type *field_type;
|
|||
|
int fieldno = -1;
|
|||
|
int variantno = -1;
|
|||
|
int subfieldno = -1;
|
|||
|
while (--nargs >= 0)
|
|||
|
{
|
|||
|
int pc = *pos;
|
|||
|
value_ptr val = NULL;
|
|||
|
int nlabels = 0;
|
|||
|
int bitpos, bitsize;
|
|||
|
char *addr;
|
|||
|
|
|||
|
/* Skip past the labels, and count them. */
|
|||
|
while (get_label (exp, pos) != NULL)
|
|||
|
nlabels++;
|
|||
|
|
|||
|
do
|
|||
|
{
|
|||
|
char *label = get_label (exp, &pc);
|
|||
|
if (label)
|
|||
|
{
|
|||
|
for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type);
|
|||
|
fieldno++)
|
|||
|
{
|
|||
|
char *field_name = TYPE_FIELD_NAME (struct_type, fieldno);
|
|||
|
if (field_name != NULL && STREQ (field_name, label))
|
|||
|
{
|
|||
|
variantno = -1;
|
|||
|
subfieldno = fieldno;
|
|||
|
substruct_type = struct_type;
|
|||
|
goto found;
|
|||
|
}
|
|||
|
}
|
|||
|
for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type);
|
|||
|
fieldno++)
|
|||
|
{
|
|||
|
char *field_name = TYPE_FIELD_NAME (struct_type, fieldno);
|
|||
|
field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
|
|||
|
if ((field_name == 0 || *field_name == '\0')
|
|||
|
&& TYPE_CODE (field_type) == TYPE_CODE_UNION)
|
|||
|
{
|
|||
|
variantno = 0;
|
|||
|
for (; variantno < TYPE_NFIELDS (field_type);
|
|||
|
variantno++)
|
|||
|
{
|
|||
|
substruct_type
|
|||
|
= TYPE_FIELD_TYPE (field_type, variantno);
|
|||
|
if (TYPE_CODE (substruct_type) == TYPE_CODE_STRUCT)
|
|||
|
{
|
|||
|
for (subfieldno = 0;
|
|||
|
subfieldno < TYPE_NFIELDS (substruct_type);
|
|||
|
subfieldno++)
|
|||
|
{
|
|||
|
if (STREQ (TYPE_FIELD_NAME (substruct_type,
|
|||
|
subfieldno),
|
|||
|
label))
|
|||
|
{
|
|||
|
goto found;
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
error ("there is no field named %s", label);
|
|||
|
found:
|
|||
|
;
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
/* Unlabelled tuple element - go to next field. */
|
|||
|
if (variantno >= 0)
|
|||
|
{
|
|||
|
subfieldno++;
|
|||
|
if (subfieldno >= TYPE_NFIELDS (substruct_type))
|
|||
|
{
|
|||
|
variantno = -1;
|
|||
|
substruct_type = struct_type;
|
|||
|
}
|
|||
|
}
|
|||
|
if (variantno < 0)
|
|||
|
{
|
|||
|
fieldno++;
|
|||
|
subfieldno = fieldno;
|
|||
|
if (fieldno >= TYPE_NFIELDS (struct_type))
|
|||
|
error ("too many initializers");
|
|||
|
field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
|
|||
|
if (TYPE_CODE (field_type) == TYPE_CODE_UNION
|
|||
|
&& TYPE_FIELD_NAME (struct_type, fieldno)[0] == '0')
|
|||
|
error ("don't know which variant you want to set");
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* Here, struct_type is the type of the inner struct,
|
|||
|
while substruct_type is the type of the inner struct.
|
|||
|
These are the same for normal structures, but a variant struct
|
|||
|
contains anonymous union fields that contain substruct fields.
|
|||
|
The value fieldno is the index of the top-level (normal or
|
|||
|
anonymous union) field in struct_field, while the value
|
|||
|
subfieldno is the index of the actual real (named inner) field
|
|||
|
in substruct_type. */
|
|||
|
|
|||
|
field_type = TYPE_FIELD_TYPE (substruct_type, subfieldno);
|
|||
|
if (val == 0)
|
|||
|
val = evaluate_subexp (field_type, exp, pos, noside);
|
|||
|
|
|||
|
/* Now actually set the field in struct_val. */
|
|||
|
|
|||
|
/* Assign val to field fieldno. */
|
|||
|
if (VALUE_TYPE (val) != field_type)
|
|||
|
val = value_cast (field_type, val);
|
|||
|
|
|||
|
bitsize = TYPE_FIELD_BITSIZE (substruct_type, subfieldno);
|
|||
|
bitpos = TYPE_FIELD_BITPOS (struct_type, fieldno);
|
|||
|
if (variantno >= 0)
|
|||
|
bitpos += TYPE_FIELD_BITPOS (substruct_type, subfieldno);
|
|||
|
addr = VALUE_CONTENTS (struct_val) + bitpos / 8;
|
|||
|
if (bitsize)
|
|||
|
modify_field (addr, value_as_long (val),
|
|||
|
bitpos % 8, bitsize);
|
|||
|
else
|
|||
|
memcpy (addr, VALUE_CONTENTS (val),
|
|||
|
TYPE_LENGTH (VALUE_TYPE (val)));
|
|||
|
} while (--nlabels > 0);
|
|||
|
}
|
|||
|
return struct_val;
|
|||
|
}
|
|||
|
|
|||
|
/* Recursive helper function for setting elements of array tuples for Chill.
|
|||
|
The target is ARRAY (which has bounds LOW_BOUND to HIGH_BOUND);
|
|||
|
the element value is ELEMENT;
|
|||
|
EXP, POS and NOSIDE are as usual.
|
|||
|
Evaluates index expresions and sets the specified element(s) of
|
|||
|
ARRAY to ELEMENT.
|
|||
|
Returns last index value. */
|
|||
|
|
|||
|
static LONGEST
|
|||
|
init_array_element (array, element, exp, pos, noside, low_bound, high_bound)
|
|||
|
value_ptr array, element;
|
|||
|
register struct expression *exp;
|
|||
|
register int *pos;
|
|||
|
enum noside noside;
|
|||
|
{
|
|||
|
LONGEST index;
|
|||
|
int element_size = TYPE_LENGTH (VALUE_TYPE (element));
|
|||
|
if (exp->elts[*pos].opcode == BINOP_COMMA)
|
|||
|
{
|
|||
|
(*pos)++;
|
|||
|
init_array_element (array, element, exp, pos, noside,
|
|||
|
low_bound, high_bound);
|
|||
|
return init_array_element (array, element,
|
|||
|
exp, pos, noside, low_bound, high_bound);
|
|||
|
}
|
|||
|
else if (exp->elts[*pos].opcode == BINOP_RANGE)
|
|||
|
{
|
|||
|
LONGEST low, high;
|
|||
|
(*pos)++;
|
|||
|
low = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
|
|||
|
high = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
|
|||
|
if (low < low_bound || high > high_bound)
|
|||
|
error ("tuple range index out of range");
|
|||
|
for (index = low ; index <= high; index++)
|
|||
|
{
|
|||
|
memcpy (VALUE_CONTENTS_RAW (array)
|
|||
|
+ (index - low_bound) * element_size,
|
|||
|
VALUE_CONTENTS (element), element_size);
|
|||
|
}
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
index = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
|
|||
|
if (index < low_bound || index > high_bound)
|
|||
|
error ("tuple index out of range");
|
|||
|
memcpy (VALUE_CONTENTS_RAW (array) + (index - low_bound) * element_size,
|
|||
|
VALUE_CONTENTS (element), element_size);
|
|||
|
}
|
|||
|
return index;
|
|||
|
}
|
|||
|
|
|||
|
value_ptr
|
|||
|
evaluate_subexp_standard (expect_type, exp, pos, noside)
|
|||
|
struct type *expect_type;
|
|||
|
register struct expression *exp;
|
|||
|
register int *pos;
|
|||
|
enum noside noside;
|
|||
|
{
|
|||
|
enum exp_opcode op;
|
|||
|
int tem, tem2, tem3;
|
|||
|
register int pc, pc2 = 0, oldpos;
|
|||
|
register value_ptr arg1 = NULL, arg2 = NULL, arg3;
|
|||
|
struct type *type;
|
|||
|
int nargs;
|
|||
|
value_ptr *argvec;
|
|||
|
int upper, lower, retcode;
|
|||
|
int code;
|
|||
|
|
|||
|
/* This expect_type crap should not be used for C. C expressions do
|
|||
|
not have any notion of expected types, never has and (goddess
|
|||
|
willing) never will. The C++ code uses it for some twisted
|
|||
|
purpose (I haven't investigated but I suspect it just the usual
|
|||
|
combination of Stroustrup figuring out some crazy language
|
|||
|
feature and Tiemann figuring out some crazier way to try to
|
|||
|
implement it). CHILL has the tuple stuff; I don't know enough
|
|||
|
about CHILL to know whether expected types is the way to do it.
|
|||
|
FORTRAN I don't know. */
|
|||
|
if (exp->language_defn->la_language != language_cplus
|
|||
|
&& exp->language_defn->la_language != language_chill)
|
|||
|
expect_type = NULL_TYPE;
|
|||
|
|
|||
|
pc = (*pos)++;
|
|||
|
op = exp->elts[pc].opcode;
|
|||
|
|
|||
|
switch (op)
|
|||
|
{
|
|||
|
case OP_SCOPE:
|
|||
|
tem = longest_to_int (exp->elts[pc + 2].longconst);
|
|||
|
(*pos) += 4 + BYTES_TO_EXP_ELEM (tem + 1);
|
|||
|
arg1 = value_struct_elt_for_reference (exp->elts[pc + 1].type,
|
|||
|
0,
|
|||
|
exp->elts[pc + 1].type,
|
|||
|
&exp->elts[pc + 3].string,
|
|||
|
expect_type);
|
|||
|
if (arg1 == NULL)
|
|||
|
error ("There is no field named %s", &exp->elts[pc + 3].string);
|
|||
|
return arg1;
|
|||
|
|
|||
|
case OP_LONG:
|
|||
|
(*pos) += 3;
|
|||
|
return value_from_longest (exp->elts[pc + 1].type,
|
|||
|
exp->elts[pc + 2].longconst);
|
|||
|
|
|||
|
case OP_DOUBLE:
|
|||
|
(*pos) += 3;
|
|||
|
return value_from_double (exp->elts[pc + 1].type,
|
|||
|
exp->elts[pc + 2].doubleconst);
|
|||
|
|
|||
|
case OP_VAR_VALUE:
|
|||
|
(*pos) += 3;
|
|||
|
if (noside == EVAL_SKIP)
|
|||
|
goto nosideret;
|
|||
|
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
|||
|
{
|
|||
|
struct symbol * sym = exp->elts[pc + 2].symbol;
|
|||
|
enum lval_type lv;
|
|||
|
|
|||
|
switch (SYMBOL_CLASS (sym))
|
|||
|
{
|
|||
|
case LOC_CONST:
|
|||
|
case LOC_LABEL:
|
|||
|
case LOC_CONST_BYTES:
|
|||
|
lv = not_lval;
|
|||
|
break;
|
|||
|
|
|||
|
case LOC_REGISTER:
|
|||
|
case LOC_REGPARM:
|
|||
|
lv = lval_register;
|
|||
|
break;
|
|||
|
|
|||
|
default:
|
|||
|
lv = lval_memory;
|
|||
|
break;
|
|||
|
}
|
|||
|
|
|||
|
return value_zero (SYMBOL_TYPE (sym), lv);
|
|||
|
}
|
|||
|
else
|
|||
|
return value_of_variable (exp->elts[pc + 2].symbol,
|
|||
|
exp->elts[pc + 1].block);
|
|||
|
|
|||
|
case OP_LAST:
|
|||
|
(*pos) += 2;
|
|||
|
return
|
|||
|
access_value_history (longest_to_int (exp->elts[pc + 1].longconst));
|
|||
|
|
|||
|
case OP_REGISTER:
|
|||
|
(*pos) += 2;
|
|||
|
return value_of_register (longest_to_int (exp->elts[pc + 1].longconst));
|
|||
|
|
|||
|
case OP_BOOL:
|
|||
|
(*pos) += 2;
|
|||
|
return value_from_longest (LA_BOOL_TYPE,
|
|||
|
exp->elts[pc + 1].longconst);
|
|||
|
|
|||
|
case OP_INTERNALVAR:
|
|||
|
(*pos) += 2;
|
|||
|
return value_of_internalvar (exp->elts[pc + 1].internalvar);
|
|||
|
|
|||
|
case OP_STRING:
|
|||
|
tem = longest_to_int (exp->elts[pc + 1].longconst);
|
|||
|
(*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
|
|||
|
if (noside == EVAL_SKIP)
|
|||
|
goto nosideret;
|
|||
|
return value_string (&exp->elts[pc + 2].string, tem);
|
|||
|
|
|||
|
case OP_BITSTRING:
|
|||
|
tem = longest_to_int (exp->elts[pc + 1].longconst);
|
|||
|
(*pos)
|
|||
|
+= 3 + BYTES_TO_EXP_ELEM ((tem + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT);
|
|||
|
if (noside == EVAL_SKIP)
|
|||
|
goto nosideret;
|
|||
|
return value_bitstring (&exp->elts[pc + 2].string, tem);
|
|||
|
break;
|
|||
|
|
|||
|
case OP_ARRAY:
|
|||
|
(*pos) += 3;
|
|||
|
tem2 = longest_to_int (exp->elts[pc + 1].longconst);
|
|||
|
tem3 = longest_to_int (exp->elts[pc + 2].longconst);
|
|||
|
nargs = tem3 - tem2 + 1;
|
|||
|
type = expect_type ? check_typedef (expect_type) : NULL_TYPE;
|
|||
|
|
|||
|
if (expect_type != NULL_TYPE && noside != EVAL_SKIP
|
|||
|
&& TYPE_CODE (type) == TYPE_CODE_STRUCT)
|
|||
|
{
|
|||
|
value_ptr rec = allocate_value (expect_type);
|
|||
|
memset (VALUE_CONTENTS_RAW (rec), '\0', TYPE_LENGTH (type));
|
|||
|
return evaluate_struct_tuple (rec, exp, pos, noside, nargs);
|
|||
|
}
|
|||
|
|
|||
|
if (expect_type != NULL_TYPE && noside != EVAL_SKIP
|
|||
|
&& TYPE_CODE (type) == TYPE_CODE_ARRAY)
|
|||
|
{
|
|||
|
struct type *range_type = TYPE_FIELD_TYPE (type, 0);
|
|||
|
struct type *element_type = TYPE_TARGET_TYPE (type);
|
|||
|
value_ptr array = allocate_value (expect_type);
|
|||
|
int element_size = TYPE_LENGTH (check_typedef (element_type));
|
|||
|
LONGEST low_bound, high_bound, index;
|
|||
|
if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
|
|||
|
{
|
|||
|
low_bound = 0;
|
|||
|
high_bound = (TYPE_LENGTH (type) / element_size) - 1;
|
|||
|
}
|
|||
|
index = low_bound;
|
|||
|
memset (VALUE_CONTENTS_RAW (array), 0, TYPE_LENGTH (expect_type));
|
|||
|
for (tem = nargs; --nargs >= 0; )
|
|||
|
{
|
|||
|
value_ptr element;
|
|||
|
int index_pc = 0;
|
|||
|
if (exp->elts[*pos].opcode == BINOP_RANGE)
|
|||
|
{
|
|||
|
index_pc = ++(*pos);
|
|||
|
evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
|
|||
|
}
|
|||
|
element = evaluate_subexp (element_type, exp, pos, noside);
|
|||
|
if (VALUE_TYPE (element) != element_type)
|
|||
|
element = value_cast (element_type, element);
|
|||
|
if (index_pc)
|
|||
|
{
|
|||
|
int continue_pc = *pos;
|
|||
|
*pos = index_pc;
|
|||
|
index = init_array_element (array, element, exp, pos, noside,
|
|||
|
low_bound, high_bound);
|
|||
|
*pos = continue_pc;
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
memcpy (VALUE_CONTENTS_RAW (array)
|
|||
|
+ (index - low_bound) * element_size,
|
|||
|
VALUE_CONTENTS (element),
|
|||
|
element_size);
|
|||
|
}
|
|||
|
index++;
|
|||
|
}
|
|||
|
return array;
|
|||
|
}
|
|||
|
|
|||
|
if (expect_type != NULL_TYPE && noside != EVAL_SKIP
|
|||
|
&& TYPE_CODE (type) == TYPE_CODE_SET)
|
|||
|
{
|
|||
|
value_ptr set = allocate_value (expect_type);
|
|||
|
char *valaddr = VALUE_CONTENTS_RAW (set);
|
|||
|
struct type *element_type = TYPE_INDEX_TYPE (type);
|
|||
|
LONGEST low_bound, high_bound;
|
|||
|
if (get_discrete_bounds (element_type, &low_bound, &high_bound) < 0)
|
|||
|
error ("(power)set type with unknown size");
|
|||
|
memset (valaddr, '\0', TYPE_LENGTH (type));
|
|||
|
for (tem = 0; tem < nargs; tem++)
|
|||
|
{
|
|||
|
LONGEST range_low, range_high;
|
|||
|
value_ptr elem_val;
|
|||
|
if (exp->elts[*pos].opcode == BINOP_RANGE)
|
|||
|
{
|
|||
|
(*pos)++;
|
|||
|
elem_val = evaluate_subexp (element_type, exp, pos, noside);
|
|||
|
range_low = value_as_long (elem_val);
|
|||
|
elem_val = evaluate_subexp (element_type, exp, pos, noside);
|
|||
|
range_high = value_as_long (elem_val);
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
elem_val = evaluate_subexp (element_type, exp, pos, noside);
|
|||
|
range_low = range_high = value_as_long (elem_val);
|
|||
|
}
|
|||
|
if (range_low > range_high)
|
|||
|
{
|
|||
|
warning ("empty POWERSET tuple range");
|
|||
|
continue;
|
|||
|
}
|
|||
|
if (range_low < low_bound || range_high > high_bound)
|
|||
|
error ("POWERSET tuple element out of range");
|
|||
|
range_low -= low_bound;
|
|||
|
range_high -= low_bound;
|
|||
|
for ( ; range_low <= range_high; range_low++)
|
|||
|
{
|
|||
|
int bit_index = (unsigned) range_low % TARGET_CHAR_BIT;
|
|||
|
if (BITS_BIG_ENDIAN)
|
|||
|
bit_index = TARGET_CHAR_BIT - 1 - bit_index;
|
|||
|
valaddr [(unsigned) range_low / TARGET_CHAR_BIT]
|
|||
|
|= 1 << bit_index;
|
|||
|
}
|
|||
|
}
|
|||
|
return set;
|
|||
|
}
|
|||
|
|
|||
|
argvec = (value_ptr *) alloca (sizeof (value_ptr) * nargs);
|
|||
|
for (tem = 0; tem < nargs; tem++)
|
|||
|
{
|
|||
|
/* Ensure that array expressions are coerced into pointer objects. */
|
|||
|
argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
|
|||
|
}
|
|||
|
if (noside == EVAL_SKIP)
|
|||
|
goto nosideret;
|
|||
|
return value_array (tem2, tem3, argvec);
|
|||
|
|
|||
|
case TERNOP_SLICE:
|
|||
|
{
|
|||
|
value_ptr array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
|||
|
int lowbound
|
|||
|
= value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
|
|||
|
int upper
|
|||
|
= value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
|
|||
|
if (noside == EVAL_SKIP)
|
|||
|
goto nosideret;
|
|||
|
return value_slice (array, lowbound, upper - lowbound + 1);
|
|||
|
}
|
|||
|
|
|||
|
case TERNOP_SLICE_COUNT:
|
|||
|
{
|
|||
|
value_ptr array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
|||
|
int lowbound
|
|||
|
= value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
|
|||
|
int length
|
|||
|
= value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
|
|||
|
return value_slice (array, lowbound, length);
|
|||
|
}
|
|||
|
|
|||
|
case TERNOP_COND:
|
|||
|
/* Skip third and second args to evaluate the first one. */
|
|||
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
|||
|
if (value_logical_not (arg1))
|
|||
|
{
|
|||
|
evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
|
|||
|
return evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
|||
|
evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
|
|||
|
return arg2;
|
|||
|
}
|
|||
|
|
|||
|
case OP_FUNCALL:
|
|||
|
(*pos) += 2;
|
|||
|
op = exp->elts[*pos].opcode;
|
|||
|
nargs = longest_to_int (exp->elts[pc + 1].longconst);
|
|||
|
/* Allocate arg vector, including space for the function to be
|
|||
|
called in argvec[0] and a terminating NULL */
|
|||
|
argvec = (value_ptr *) alloca (sizeof (value_ptr) * (nargs + 3));
|
|||
|
if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
|
|||
|
{
|
|||
|
LONGEST fnptr;
|
|||
|
|
|||
|
nargs++;
|
|||
|
/* First, evaluate the structure into arg2 */
|
|||
|
pc2 = (*pos)++;
|
|||
|
|
|||
|
if (noside == EVAL_SKIP)
|
|||
|
goto nosideret;
|
|||
|
|
|||
|
if (op == STRUCTOP_MEMBER)
|
|||
|
{
|
|||
|
arg2 = evaluate_subexp_for_address (exp, pos, noside);
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
|||
|
}
|
|||
|
|
|||
|
/* If the function is a virtual function, then the
|
|||
|
aggregate value (providing the structure) plays
|
|||
|
its part by providing the vtable. Otherwise,
|
|||
|
it is just along for the ride: call the function
|
|||
|
directly. */
|
|||
|
|
|||
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
|||
|
|
|||
|
fnptr = value_as_long (arg1);
|
|||
|
|
|||
|
if (METHOD_PTR_IS_VIRTUAL(fnptr))
|
|||
|
{
|
|||
|
int fnoffset = METHOD_PTR_TO_VOFFSET(fnptr);
|
|||
|
struct type *basetype;
|
|||
|
struct type *domain_type =
|
|||
|
TYPE_DOMAIN_TYPE (TYPE_TARGET_TYPE (VALUE_TYPE (arg1)));
|
|||
|
int i, j;
|
|||
|
basetype = TYPE_TARGET_TYPE (VALUE_TYPE (arg2));
|
|||
|
if (domain_type != basetype)
|
|||
|
arg2 = value_cast(lookup_pointer_type (domain_type), arg2);
|
|||
|
basetype = TYPE_VPTR_BASETYPE (domain_type);
|
|||
|
for (i = TYPE_NFN_FIELDS (basetype) - 1; i >= 0; i--)
|
|||
|
{
|
|||
|
struct fn_field *f = TYPE_FN_FIELDLIST1 (basetype, i);
|
|||
|
/* If one is virtual, then all are virtual. */
|
|||
|
if (TYPE_FN_FIELD_VIRTUAL_P (f, 0))
|
|||
|
for (j = TYPE_FN_FIELDLIST_LENGTH (basetype, i) - 1; j >= 0; --j)
|
|||
|
if ((int) TYPE_FN_FIELD_VOFFSET (f, j) == fnoffset)
|
|||
|
{
|
|||
|
value_ptr temp = value_ind (arg2);
|
|||
|
arg1 = value_virtual_fn_field (&temp, f, j, domain_type, 0);
|
|||
|
arg2 = value_addr (temp);
|
|||
|
goto got_it;
|
|||
|
}
|
|||
|
}
|
|||
|
if (i < 0)
|
|||
|
error ("virtual function at index %d not found", fnoffset);
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
VALUE_TYPE (arg1) = lookup_pointer_type (TYPE_TARGET_TYPE (VALUE_TYPE (arg1)));
|
|||
|
}
|
|||
|
got_it:
|
|||
|
|
|||
|
/* Now, say which argument to start evaluating from */
|
|||
|
tem = 2;
|
|||
|
}
|
|||
|
else if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR)
|
|||
|
{
|
|||
|
/* Hair for method invocations */
|
|||
|
int tem2;
|
|||
|
|
|||
|
nargs++;
|
|||
|
/* First, evaluate the structure into arg2 */
|
|||
|
pc2 = (*pos)++;
|
|||
|
tem2 = longest_to_int (exp->elts[pc2 + 1].longconst);
|
|||
|
*pos += 3 + BYTES_TO_EXP_ELEM (tem2 + 1);
|
|||
|
if (noside == EVAL_SKIP)
|
|||
|
goto nosideret;
|
|||
|
|
|||
|
if (op == STRUCTOP_STRUCT)
|
|||
|
{
|
|||
|
/* If v is a variable in a register, and the user types
|
|||
|
v.method (), this will produce an error, because v has
|
|||
|
no address.
|
|||
|
|
|||
|
A possible way around this would be to allocate a
|
|||
|
copy of the variable on the stack, copy in the
|
|||
|
contents, call the function, and copy out the
|
|||
|
contents. I.e. convert this from call by reference
|
|||
|
to call by copy-return (or whatever it's called).
|
|||
|
However, this does not work because it is not the
|
|||
|
same: the method being called could stash a copy of
|
|||
|
the address, and then future uses through that address
|
|||
|
(after the method returns) would be expected to
|
|||
|
use the variable itself, not some copy of it. */
|
|||
|
arg2 = evaluate_subexp_for_address (exp, pos, noside);
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
|||
|
}
|
|||
|
/* Now, say which argument to start evaluating from */
|
|||
|
tem = 2;
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
argvec[0] = evaluate_subexp_with_coercion (exp, pos, noside);
|
|||
|
tem = 1;
|
|||
|
type = VALUE_TYPE (argvec[0]);
|
|||
|
if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
|
|||
|
type = TYPE_TARGET_TYPE (type);
|
|||
|
if (type && TYPE_CODE (type) == TYPE_CODE_FUNC)
|
|||
|
{
|
|||
|
for (; tem <= nargs && tem <= TYPE_NFIELDS (type); tem++)
|
|||
|
{
|
|||
|
argvec[tem] = evaluate_subexp (TYPE_FIELD_TYPE (type, tem-1),
|
|||
|
exp, pos, noside);
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
for (; tem <= nargs; tem++)
|
|||
|
{
|
|||
|
/* Ensure that array expressions are coerced into pointer objects. */
|
|||
|
|
|||
|
argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
|
|||
|
}
|
|||
|
|
|||
|
/* signal end of arglist */
|
|||
|
argvec[tem] = 0;
|
|||
|
|
|||
|
if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR)
|
|||
|
{
|
|||
|
int static_memfuncp;
|
|||
|
value_ptr temp = arg2;
|
|||
|
char tstr[64];
|
|||
|
|
|||
|
argvec[1] = arg2;
|
|||
|
argvec[0] = 0;
|
|||
|
strcpy(tstr, &exp->elts[pc2+2].string);
|
|||
|
if (!argvec[0])
|
|||
|
{
|
|||
|
temp = arg2;
|
|||
|
argvec[0] =
|
|||
|
value_struct_elt (&temp, argvec+1, tstr,
|
|||
|
&static_memfuncp,
|
|||
|
op == STRUCTOP_STRUCT
|
|||
|
? "structure" : "structure pointer");
|
|||
|
}
|
|||
|
arg2 = value_from_longest (lookup_pointer_type(VALUE_TYPE (temp)),
|
|||
|
VALUE_ADDRESS (temp)+VALUE_OFFSET (temp));
|
|||
|
argvec[1] = arg2;
|
|||
|
|
|||
|
if (static_memfuncp)
|
|||
|
{
|
|||
|
argvec[1] = argvec[0];
|
|||
|
nargs--;
|
|||
|
argvec++;
|
|||
|
}
|
|||
|
}
|
|||
|
else if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
|
|||
|
{
|
|||
|
argvec[1] = arg2;
|
|||
|
argvec[0] = arg1;
|
|||
|
}
|
|||
|
|
|||
|
do_call_it:
|
|||
|
|
|||
|
if (noside == EVAL_SKIP)
|
|||
|
goto nosideret;
|
|||
|
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
|||
|
{
|
|||
|
/* If the return type doesn't look like a function type, call an
|
|||
|
error. This can happen if somebody tries to turn a variable into
|
|||
|
a function call. This is here because people often want to
|
|||
|
call, eg, strcmp, which gdb doesn't know is a function. If
|
|||
|
gdb isn't asked for it's opinion (ie. through "whatis"),
|
|||
|
it won't offer it. */
|
|||
|
|
|||
|
struct type *ftype =
|
|||
|
TYPE_TARGET_TYPE (VALUE_TYPE (argvec[0]));
|
|||
|
|
|||
|
if (ftype)
|
|||
|
return allocate_value (TYPE_TARGET_TYPE (VALUE_TYPE (argvec[0])));
|
|||
|
else
|
|||
|
error ("Expression of type other than \"Function returning ...\" used as function");
|
|||
|
}
|
|||
|
return call_function_by_hand (argvec[0], nargs, argvec + 1);
|
|||
|
|
|||
|
case OP_F77_UNDETERMINED_ARGLIST:
|
|||
|
|
|||
|
/* Remember that in F77, functions, substring ops and
|
|||
|
array subscript operations cannot be disambiguated
|
|||
|
at parse time. We have made all array subscript operations,
|
|||
|
substring operations as well as function calls come here
|
|||
|
and we now have to discover what the heck this thing actually was.
|
|||
|
If it is a function, we process just as if we got an OP_FUNCALL. */
|
|||
|
|
|||
|
nargs = longest_to_int (exp->elts[pc+1].longconst);
|
|||
|
(*pos) += 2;
|
|||
|
|
|||
|
/* First determine the type code we are dealing with. */
|
|||
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
|||
|
type = check_typedef (VALUE_TYPE (arg1));
|
|||
|
code = TYPE_CODE (type);
|
|||
|
|
|||
|
switch (code)
|
|||
|
{
|
|||
|
case TYPE_CODE_ARRAY:
|
|||
|
goto multi_f77_subscript;
|
|||
|
|
|||
|
case TYPE_CODE_STRING:
|
|||
|
goto op_f77_substr;
|
|||
|
|
|||
|
case TYPE_CODE_PTR:
|
|||
|
case TYPE_CODE_FUNC:
|
|||
|
/* It's a function call. */
|
|||
|
/* Allocate arg vector, including space for the function to be
|
|||
|
called in argvec[0] and a terminating NULL */
|
|||
|
argvec = (value_ptr *) alloca (sizeof (value_ptr) * (nargs + 2));
|
|||
|
argvec[0] = arg1;
|
|||
|
tem = 1;
|
|||
|
for (; tem <= nargs; tem++)
|
|||
|
argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
|
|||
|
argvec[tem] = 0; /* signal end of arglist */
|
|||
|
goto do_call_it;
|
|||
|
|
|||
|
default:
|
|||
|
error ("Cannot perform substring on this type");
|
|||
|
}
|
|||
|
|
|||
|
op_f77_substr:
|
|||
|
/* We have a substring operation on our hands here,
|
|||
|
let us get the string we will be dealing with */
|
|||
|
|
|||
|
/* Now evaluate the 'from' and 'to' */
|
|||
|
|
|||
|
arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
|
|||
|
|
|||
|
if (nargs < 2)
|
|||
|
return value_subscript (arg1, arg2);
|
|||
|
|
|||
|
arg3 = evaluate_subexp_with_coercion (exp, pos, noside);
|
|||
|
|
|||
|
if (noside == EVAL_SKIP)
|
|||
|
goto nosideret;
|
|||
|
|
|||
|
tem2 = value_as_long (arg2);
|
|||
|
tem3 = value_as_long (arg3);
|
|||
|
|
|||
|
return value_slice (arg1, tem2, tem3 - tem2 + 1);
|
|||
|
|
|||
|
case OP_COMPLEX:
|
|||
|
/* We have a complex number, There should be 2 floating
|
|||
|
point numbers that compose it */
|
|||
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
|||
|
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
|||
|
|
|||
|
return value_literal_complex (arg1, arg2, builtin_type_f_complex_s16);
|
|||
|
|
|||
|
case STRUCTOP_STRUCT:
|
|||
|
tem = longest_to_int (exp->elts[pc + 1].longconst);
|
|||
|
(*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
|
|||
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
|||
|
if (noside == EVAL_SKIP)
|
|||
|
goto nosideret;
|
|||
|
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
|||
|
return value_zero (lookup_struct_elt_type (VALUE_TYPE (arg1),
|
|||
|
&exp->elts[pc + 2].string,
|
|||
|
0),
|
|||
|
lval_memory);
|
|||
|
else
|
|||
|
{
|
|||
|
value_ptr temp = arg1;
|
|||
|
return value_struct_elt (&temp, NULL, &exp->elts[pc + 2].string,
|
|||
|
NULL, "structure");
|
|||
|
}
|
|||
|
|
|||
|
case STRUCTOP_PTR:
|
|||
|
tem = longest_to_int (exp->elts[pc + 1].longconst);
|
|||
|
(*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
|
|||
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
|||
|
if (noside == EVAL_SKIP)
|
|||
|
goto nosideret;
|
|||
|
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
|||
|
return value_zero (lookup_struct_elt_type (VALUE_TYPE (arg1),
|
|||
|
&exp->elts[pc + 2].string,
|
|||
|
0),
|
|||
|
lval_memory);
|
|||
|
else
|
|||
|
{
|
|||
|
value_ptr temp = arg1;
|
|||
|
return value_struct_elt (&temp, NULL, &exp->elts[pc + 2].string,
|
|||
|
NULL, "structure pointer");
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
case STRUCTOP_MEMBER:
|
|||
|
arg1 = evaluate_subexp_for_address (exp, pos, noside);
|
|||
|
goto handle_pointer_to_member;
|
|||
|
case STRUCTOP_MPTR:
|
|||
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
|||
|
handle_pointer_to_member:
|
|||
|
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
|||
|
if (noside == EVAL_SKIP)
|
|||
|
goto nosideret;
|
|||
|
type = check_typedef (VALUE_TYPE (arg2));
|
|||
|
if (TYPE_CODE (type) != TYPE_CODE_PTR)
|
|||
|
goto bad_pointer_to_member;
|
|||
|
type = check_typedef (TYPE_TARGET_TYPE (type));
|
|||
|
if (TYPE_CODE (type) == TYPE_CODE_METHOD)
|
|||
|
error ("not implemented: pointer-to-method in pointer-to-member construct");
|
|||
|
if (TYPE_CODE (type) != TYPE_CODE_MEMBER)
|
|||
|
goto bad_pointer_to_member;
|
|||
|
/* Now, convert these values to an address. */
|
|||
|
arg1 = value_cast (lookup_pointer_type (TYPE_DOMAIN_TYPE (type)),
|
|||
|
arg1);
|
|||
|
arg3 = value_from_longest (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
|
|||
|
value_as_long (arg1) + value_as_long (arg2));
|
|||
|
return value_ind (arg3);
|
|||
|
bad_pointer_to_member:
|
|||
|
error("non-pointer-to-member value used in pointer-to-member construct");
|
|||
|
|
|||
|
case BINOP_CONCAT:
|
|||
|
arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
|
|||
|
arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
|
|||
|
if (noside == EVAL_SKIP)
|
|||
|
goto nosideret;
|
|||
|
if (binop_user_defined_p (op, arg1, arg2))
|
|||
|
return value_x_binop (arg1, arg2, op, OP_NULL);
|
|||
|
else
|
|||
|
return value_concat (arg1, arg2);
|
|||
|
|
|||
|
case BINOP_ASSIGN:
|
|||
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
|||
|
arg2 = evaluate_subexp (VALUE_TYPE (arg1), exp, pos, noside);
|
|||
|
if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
|
|||
|
return arg1;
|
|||
|
if (binop_user_defined_p (op, arg1, arg2))
|
|||
|
return value_x_binop (arg1, arg2, op, OP_NULL);
|
|||
|
else
|
|||
|
return value_assign (arg1, arg2);
|
|||
|
|
|||
|
case BINOP_ASSIGN_MODIFY:
|
|||
|
(*pos) += 2;
|
|||
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
|||
|
arg2 = evaluate_subexp (VALUE_TYPE (arg1), exp, pos, noside);
|
|||
|
if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
|
|||
|
return arg1;
|
|||
|
op = exp->elts[pc + 1].opcode;
|
|||
|
if (binop_user_defined_p (op, arg1, arg2))
|
|||
|
return value_x_binop (arg1, arg2, BINOP_ASSIGN_MODIFY, op);
|
|||
|
else if (op == BINOP_ADD)
|
|||
|
arg2 = value_add (arg1, arg2);
|
|||
|
else if (op == BINOP_SUB)
|
|||
|
arg2 = value_sub (arg1, arg2);
|
|||
|
else
|
|||
|
arg2 = value_binop (arg1, arg2, op);
|
|||
|
return value_assign (arg1, arg2);
|
|||
|
|
|||
|
case BINOP_ADD:
|
|||
|
arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
|
|||
|
arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
|
|||
|
if (noside == EVAL_SKIP)
|
|||
|
goto nosideret;
|
|||
|
if (binop_user_defined_p (op, arg1, arg2))
|
|||
|
return value_x_binop (arg1, arg2, op, OP_NULL);
|
|||
|
else
|
|||
|
return value_add (arg1, arg2);
|
|||
|
|
|||
|
case BINOP_SUB:
|
|||
|
arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
|
|||
|
arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
|
|||
|
if (noside == EVAL_SKIP)
|
|||
|
goto nosideret;
|
|||
|
if (binop_user_defined_p (op, arg1, arg2))
|
|||
|
return value_x_binop (arg1, arg2, op, OP_NULL);
|
|||
|
else
|
|||
|
return value_sub (arg1, arg2);
|
|||
|
|
|||
|
case BINOP_MUL:
|
|||
|
case BINOP_DIV:
|
|||
|
case BINOP_REM:
|
|||
|
case BINOP_MOD:
|
|||
|
case BINOP_LSH:
|
|||
|
case BINOP_RSH:
|
|||
|
case BINOP_BITWISE_AND:
|
|||
|
case BINOP_BITWISE_IOR:
|
|||
|
case BINOP_BITWISE_XOR:
|
|||
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
|||
|
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
|||
|
if (noside == EVAL_SKIP)
|
|||
|
goto nosideret;
|
|||
|
if (binop_user_defined_p (op, arg1, arg2))
|
|||
|
return value_x_binop (arg1, arg2, op, OP_NULL);
|
|||
|
else
|
|||
|
if (noside == EVAL_AVOID_SIDE_EFFECTS
|
|||
|
&& (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
|
|||
|
return value_zero (VALUE_TYPE (arg1), not_lval);
|
|||
|
else
|
|||
|
return value_binop (arg1, arg2, op);
|
|||
|
|
|||
|
case BINOP_RANGE:
|
|||
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
|||
|
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
|||
|
if (noside == EVAL_SKIP)
|
|||
|
goto nosideret;
|
|||
|
error ("':' operator used in invalid context");
|
|||
|
|
|||
|
case BINOP_SUBSCRIPT:
|
|||
|
arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
|
|||
|
arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
|
|||
|
if (noside == EVAL_SKIP)
|
|||
|
goto nosideret;
|
|||
|
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
|||
|
{
|
|||
|
/* If the user attempts to subscript something that has no target
|
|||
|
type (like a plain int variable for example), then report this
|
|||
|
as an error. */
|
|||
|
|
|||
|
type = TYPE_TARGET_TYPE (check_typedef (VALUE_TYPE (arg1)));
|
|||
|
if (type)
|
|||
|
return value_zero (type, VALUE_LVAL (arg1));
|
|||
|
else
|
|||
|
error ("cannot subscript something of type `%s'",
|
|||
|
TYPE_NAME (VALUE_TYPE (arg1)));
|
|||
|
}
|
|||
|
|
|||
|
if (binop_user_defined_p (op, arg1, arg2))
|
|||
|
return value_x_binop (arg1, arg2, op, OP_NULL);
|
|||
|
else
|
|||
|
return value_subscript (arg1, arg2);
|
|||
|
|
|||
|
case BINOP_IN:
|
|||
|
arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
|
|||
|
arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
|
|||
|
if (noside == EVAL_SKIP)
|
|||
|
goto nosideret;
|
|||
|
return value_in (arg1, arg2);
|
|||
|
|
|||
|
case MULTI_SUBSCRIPT:
|
|||
|
(*pos) += 2;
|
|||
|
nargs = longest_to_int (exp->elts[pc + 1].longconst);
|
|||
|
arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
|
|||
|
while (nargs-- > 0)
|
|||
|
{
|
|||
|
arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
|
|||
|
/* FIXME: EVAL_SKIP handling may not be correct. */
|
|||
|
if (noside == EVAL_SKIP)
|
|||
|
{
|
|||
|
if (nargs > 0)
|
|||
|
{
|
|||
|
continue;
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
goto nosideret;
|
|||
|
}
|
|||
|
}
|
|||
|
/* FIXME: EVAL_AVOID_SIDE_EFFECTS handling may not be correct. */
|
|||
|
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
|||
|
{
|
|||
|
/* If the user attempts to subscript something that has no target
|
|||
|
type (like a plain int variable for example), then report this
|
|||
|
as an error. */
|
|||
|
|
|||
|
type = TYPE_TARGET_TYPE (check_typedef (VALUE_TYPE (arg1)));
|
|||
|
if (type != NULL)
|
|||
|
{
|
|||
|
arg1 = value_zero (type, VALUE_LVAL (arg1));
|
|||
|
noside = EVAL_SKIP;
|
|||
|
continue;
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
error ("cannot subscript something of type `%s'",
|
|||
|
TYPE_NAME (VALUE_TYPE (arg1)));
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
if (binop_user_defined_p (op, arg1, arg2))
|
|||
|
{
|
|||
|
arg1 = value_x_binop (arg1, arg2, op, OP_NULL);
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
arg1 = value_subscript (arg1, arg2);
|
|||
|
}
|
|||
|
}
|
|||
|
return (arg1);
|
|||
|
|
|||
|
multi_f77_subscript:
|
|||
|
{
|
|||
|
int subscript_array[MAX_FORTRAN_DIMS+1]; /* 1-based array of
|
|||
|
subscripts, max == 7 */
|
|||
|
int array_size_array[MAX_FORTRAN_DIMS+1];
|
|||
|
int ndimensions=1,i;
|
|||
|
struct type *tmp_type;
|
|||
|
int offset_item; /* The array offset where the item lives */
|
|||
|
|
|||
|
if (nargs > MAX_FORTRAN_DIMS)
|
|||
|
error ("Too many subscripts for F77 (%d Max)", MAX_FORTRAN_DIMS);
|
|||
|
|
|||
|
tmp_type = check_typedef (VALUE_TYPE (arg1));
|
|||
|
ndimensions = calc_f77_array_dims (type);
|
|||
|
|
|||
|
if (nargs != ndimensions)
|
|||
|
error ("Wrong number of subscripts");
|
|||
|
|
|||
|
/* Now that we know we have a legal array subscript expression
|
|||
|
let us actually find out where this element exists in the array. */
|
|||
|
|
|||
|
offset_item = 0;
|
|||
|
for (i = 1; i <= nargs; i++)
|
|||
|
{
|
|||
|
/* Evaluate each subscript, It must be a legal integer in F77 */
|
|||
|
arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
|
|||
|
|
|||
|
/* Fill in the subscript and array size arrays */
|
|||
|
|
|||
|
subscript_array[i] = value_as_long (arg2);
|
|||
|
|
|||
|
retcode = f77_get_dynamic_upperbound (tmp_type, &upper);
|
|||
|
if (retcode == BOUND_FETCH_ERROR)
|
|||
|
error ("Cannot obtain dynamic upper bound");
|
|||
|
|
|||
|
retcode = f77_get_dynamic_lowerbound (tmp_type, &lower);
|
|||
|
if (retcode == BOUND_FETCH_ERROR)
|
|||
|
error("Cannot obtain dynamic lower bound");
|
|||
|
|
|||
|
array_size_array[i] = upper - lower + 1;
|
|||
|
|
|||
|
/* Zero-normalize subscripts so that offsetting will work. */
|
|||
|
|
|||
|
subscript_array[i] -= lower;
|
|||
|
|
|||
|
/* If we are at the bottom of a multidimensional
|
|||
|
array type then keep a ptr to the last ARRAY
|
|||
|
type around for use when calling value_subscript()
|
|||
|
below. This is done because we pretend to value_subscript
|
|||
|
that we actually have a one-dimensional array
|
|||
|
of base element type that we apply a simple
|
|||
|
offset to. */
|
|||
|
|
|||
|
if (i < nargs)
|
|||
|
tmp_type = check_typedef (TYPE_TARGET_TYPE (tmp_type));
|
|||
|
}
|
|||
|
|
|||
|
/* Now let us calculate the offset for this item */
|
|||
|
|
|||
|
offset_item = subscript_array[ndimensions];
|
|||
|
|
|||
|
for (i = ndimensions - 1; i >= 1; i--)
|
|||
|
offset_item =
|
|||
|
array_size_array[i] * offset_item + subscript_array[i];
|
|||
|
|
|||
|
/* Construct a value node with the value of the offset */
|
|||
|
|
|||
|
arg2 = value_from_longest (builtin_type_f_integer, offset_item);
|
|||
|
|
|||
|
/* Let us now play a dirty trick: we will take arg1
|
|||
|
which is a value node pointing to the topmost level
|
|||
|
of the multidimensional array-set and pretend
|
|||
|
that it is actually a array of the final element
|
|||
|
type, this will ensure that value_subscript()
|
|||
|
returns the correct type value */
|
|||
|
|
|||
|
VALUE_TYPE (arg1) = tmp_type;
|
|||
|
return value_ind (value_add (value_coerce_array (arg1), arg2));
|
|||
|
}
|
|||
|
|
|||
|
case BINOP_LOGICAL_AND:
|
|||
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
|||
|
if (noside == EVAL_SKIP)
|
|||
|
{
|
|||
|
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
|||
|
goto nosideret;
|
|||
|
}
|
|||
|
|
|||
|
oldpos = *pos;
|
|||
|
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
|
|||
|
*pos = oldpos;
|
|||
|
|
|||
|
if (binop_user_defined_p (op, arg1, arg2))
|
|||
|
{
|
|||
|
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
|||
|
return value_x_binop (arg1, arg2, op, OP_NULL);
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
tem = value_logical_not (arg1);
|
|||
|
arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
|
|||
|
(tem ? EVAL_SKIP : noside));
|
|||
|
return value_from_longest (LA_BOOL_TYPE,
|
|||
|
(LONGEST) (!tem && !value_logical_not (arg2)));
|
|||
|
}
|
|||
|
|
|||
|
case BINOP_LOGICAL_OR:
|
|||
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
|||
|
if (noside == EVAL_SKIP)
|
|||
|
{
|
|||
|
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
|||
|
goto nosideret;
|
|||
|
}
|
|||
|
|
|||
|
oldpos = *pos;
|
|||
|
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
|
|||
|
*pos = oldpos;
|
|||
|
|
|||
|
if (binop_user_defined_p (op, arg1, arg2))
|
|||
|
{
|
|||
|
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
|||
|
return value_x_binop (arg1, arg2, op, OP_NULL);
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
tem = value_logical_not (arg1);
|
|||
|
arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
|
|||
|
(!tem ? EVAL_SKIP : noside));
|
|||
|
return value_from_longest (LA_BOOL_TYPE,
|
|||
|
(LONGEST) (!tem || !value_logical_not (arg2)));
|
|||
|
}
|
|||
|
|
|||
|
case BINOP_EQUAL:
|
|||
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
|||
|
arg2 = evaluate_subexp (VALUE_TYPE (arg1), exp, pos, noside);
|
|||
|
if (noside == EVAL_SKIP)
|
|||
|
goto nosideret;
|
|||
|
if (binop_user_defined_p (op, arg1, arg2))
|
|||
|
{
|
|||
|
return value_x_binop (arg1, arg2, op, OP_NULL);
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
tem = value_equal (arg1, arg2);
|
|||
|
return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);
|
|||
|
}
|
|||
|
|
|||
|
case BINOP_NOTEQUAL:
|
|||
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
|||
|
arg2 = evaluate_subexp (VALUE_TYPE (arg1), exp, pos, noside);
|
|||
|
if (noside == EVAL_SKIP)
|
|||
|
goto nosideret;
|
|||
|
if (binop_user_defined_p (op, arg1, arg2))
|
|||
|
{
|
|||
|
return value_x_binop (arg1, arg2, op, OP_NULL);
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
tem = value_equal (arg1, arg2);
|
|||
|
return value_from_longest (LA_BOOL_TYPE, (LONGEST) ! tem);
|
|||
|
}
|
|||
|
|
|||
|
case BINOP_LESS:
|
|||
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
|||
|
arg2 = evaluate_subexp (VALUE_TYPE (arg1), exp, pos, noside);
|
|||
|
if (noside == EVAL_SKIP)
|
|||
|
goto nosideret;
|
|||
|
if (binop_user_defined_p (op, arg1, arg2))
|
|||
|
{
|
|||
|
return value_x_binop (arg1, arg2, op, OP_NULL);
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
tem = value_less (arg1, arg2);
|
|||
|
return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);
|
|||
|
}
|
|||
|
|
|||
|
case BINOP_GTR:
|
|||
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
|||
|
arg2 = evaluate_subexp (VALUE_TYPE (arg1), exp, pos, noside);
|
|||
|
if (noside == EVAL_SKIP)
|
|||
|
goto nosideret;
|
|||
|
if (binop_user_defined_p (op, arg1, arg2))
|
|||
|
{
|
|||
|
return value_x_binop (arg1, arg2, op, OP_NULL);
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
tem = value_less (arg2, arg1);
|
|||
|
return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);
|
|||
|
}
|
|||
|
|
|||
|
case BINOP_GEQ:
|
|||
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
|||
|
arg2 = evaluate_subexp (VALUE_TYPE (arg1), exp, pos, noside);
|
|||
|
if (noside == EVAL_SKIP)
|
|||
|
goto nosideret;
|
|||
|
if (binop_user_defined_p (op, arg1, arg2))
|
|||
|
{
|
|||
|
return value_x_binop (arg1, arg2, op, OP_NULL);
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
tem = value_less (arg2, arg1) || value_equal (arg1, arg2);
|
|||
|
return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);
|
|||
|
}
|
|||
|
|
|||
|
case BINOP_LEQ:
|
|||
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
|||
|
arg2 = evaluate_subexp (VALUE_TYPE (arg1), exp, pos, noside);
|
|||
|
if (noside == EVAL_SKIP)
|
|||
|
goto nosideret;
|
|||
|
if (binop_user_defined_p (op, arg1, arg2))
|
|||
|
{
|
|||
|
return value_x_binop (arg1, arg2, op, OP_NULL);
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
tem = value_less (arg1, arg2) || value_equal (arg1, arg2);
|
|||
|
return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);
|
|||
|
}
|
|||
|
|
|||
|
case BINOP_REPEAT:
|
|||
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
|||
|
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
|||
|
if (noside == EVAL_SKIP)
|
|||
|
goto nosideret;
|
|||
|
if (TYPE_CODE (VALUE_TYPE (arg2)) != TYPE_CODE_INT)
|
|||
|
error ("Non-integral right operand for \"@\" operator.");
|
|||
|
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
|||
|
{
|
|||
|
return allocate_repeat_value (VALUE_TYPE (arg1),
|
|||
|
longest_to_int (value_as_long (arg2)));
|
|||
|
}
|
|||
|
else
|
|||
|
return value_repeat (arg1, longest_to_int (value_as_long (arg2)));
|
|||
|
|
|||
|
case BINOP_COMMA:
|
|||
|
evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
|||
|
return evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
|||
|
|
|||
|
case UNOP_NEG:
|
|||
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
|||
|
if (noside == EVAL_SKIP)
|
|||
|
goto nosideret;
|
|||
|
if (unop_user_defined_p (op, arg1))
|
|||
|
return value_x_unop (arg1, op);
|
|||
|
else
|
|||
|
return value_neg (arg1);
|
|||
|
|
|||
|
case UNOP_COMPLEMENT:
|
|||
|
/* C++: check for and handle destructor names. */
|
|||
|
op = exp->elts[*pos].opcode;
|
|||
|
|
|||
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
|||
|
if (noside == EVAL_SKIP)
|
|||
|
goto nosideret;
|
|||
|
if (unop_user_defined_p (UNOP_COMPLEMENT, arg1))
|
|||
|
return value_x_unop (arg1, UNOP_COMPLEMENT);
|
|||
|
else
|
|||
|
return value_complement (arg1);
|
|||
|
|
|||
|
case UNOP_LOGICAL_NOT:
|
|||
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
|||
|
if (noside == EVAL_SKIP)
|
|||
|
goto nosideret;
|
|||
|
if (unop_user_defined_p (op, arg1))
|
|||
|
return value_x_unop (arg1, op);
|
|||
|
else
|
|||
|
return value_from_longest (builtin_type_int,
|
|||
|
(LONGEST) value_logical_not (arg1));
|
|||
|
|
|||
|
case UNOP_IND:
|
|||
|
if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
|
|||
|
expect_type = TYPE_TARGET_TYPE (check_typedef (expect_type));
|
|||
|
arg1 = evaluate_subexp (expect_type, exp, pos, noside);
|
|||
|
if (noside == EVAL_SKIP)
|
|||
|
goto nosideret;
|
|||
|
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
|||
|
{
|
|||
|
type = check_typedef (VALUE_TYPE (arg1));
|
|||
|
if (TYPE_CODE (type) == TYPE_CODE_PTR
|
|||
|
|| TYPE_CODE (type) == TYPE_CODE_REF
|
|||
|
/* In C you can dereference an array to get the 1st elt. */
|
|||
|
|| TYPE_CODE (type) == TYPE_CODE_ARRAY
|
|||
|
)
|
|||
|
return value_zero (TYPE_TARGET_TYPE (type),
|
|||
|
lval_memory);
|
|||
|
else if (TYPE_CODE (type) == TYPE_CODE_INT)
|
|||
|
/* GDB allows dereferencing an int. */
|
|||
|
return value_zero (builtin_type_int, lval_memory);
|
|||
|
else
|
|||
|
error ("Attempt to take contents of a non-pointer value.");
|
|||
|
}
|
|||
|
return value_ind (arg1);
|
|||
|
|
|||
|
case UNOP_ADDR:
|
|||
|
/* C++: check for and handle pointer to members. */
|
|||
|
|
|||
|
op = exp->elts[*pos].opcode;
|
|||
|
|
|||
|
if (noside == EVAL_SKIP)
|
|||
|
{
|
|||
|
if (op == OP_SCOPE)
|
|||
|
{
|
|||
|
int temm = longest_to_int (exp->elts[pc+3].longconst);
|
|||
|
(*pos) += 3 + BYTES_TO_EXP_ELEM (temm + 1);
|
|||
|
}
|
|||
|
else
|
|||
|
evaluate_subexp (expect_type, exp, pos, EVAL_SKIP);
|
|||
|
goto nosideret;
|
|||
|
}
|
|||
|
|
|||
|
return evaluate_subexp_for_address (exp, pos, noside);
|
|||
|
|
|||
|
case UNOP_SIZEOF:
|
|||
|
if (noside == EVAL_SKIP)
|
|||
|
{
|
|||
|
evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
|
|||
|
goto nosideret;
|
|||
|
}
|
|||
|
return evaluate_subexp_for_sizeof (exp, pos);
|
|||
|
|
|||
|
case UNOP_CAST:
|
|||
|
(*pos) += 2;
|
|||
|
type = exp->elts[pc + 1].type;
|
|||
|
arg1 = evaluate_subexp (type, exp, pos, noside);
|
|||
|
if (noside == EVAL_SKIP)
|
|||
|
goto nosideret;
|
|||
|
if (type != VALUE_TYPE (arg1))
|
|||
|
arg1 = value_cast (type, arg1);
|
|||
|
return arg1;
|
|||
|
|
|||
|
case UNOP_MEMVAL:
|
|||
|
(*pos) += 2;
|
|||
|
arg1 = evaluate_subexp (expect_type, exp, pos, noside);
|
|||
|
if (noside == EVAL_SKIP)
|
|||
|
goto nosideret;
|
|||
|
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
|||
|
return value_zero (exp->elts[pc + 1].type, lval_memory);
|
|||
|
else
|
|||
|
return value_at_lazy (exp->elts[pc + 1].type,
|
|||
|
value_as_pointer (arg1));
|
|||
|
|
|||
|
case UNOP_PREINCREMENT:
|
|||
|
arg1 = evaluate_subexp (expect_type, exp, pos, noside);
|
|||
|
if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
|
|||
|
return arg1;
|
|||
|
else if (unop_user_defined_p (op, arg1))
|
|||
|
{
|
|||
|
return value_x_unop (arg1, op);
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
arg2 = value_add (arg1, value_from_longest (builtin_type_char,
|
|||
|
(LONGEST) 1));
|
|||
|
return value_assign (arg1, arg2);
|
|||
|
}
|
|||
|
|
|||
|
case UNOP_PREDECREMENT:
|
|||
|
arg1 = evaluate_subexp (expect_type, exp, pos, noside);
|
|||
|
if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
|
|||
|
return arg1;
|
|||
|
else if (unop_user_defined_p (op, arg1))
|
|||
|
{
|
|||
|
return value_x_unop (arg1, op);
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
arg2 = value_sub (arg1, value_from_longest (builtin_type_char,
|
|||
|
(LONGEST) 1));
|
|||
|
return value_assign (arg1, arg2);
|
|||
|
}
|
|||
|
|
|||
|
case UNOP_POSTINCREMENT:
|
|||
|
arg1 = evaluate_subexp (expect_type, exp, pos, noside);
|
|||
|
if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
|
|||
|
return arg1;
|
|||
|
else if (unop_user_defined_p (op, arg1))
|
|||
|
{
|
|||
|
return value_x_unop (arg1, op);
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
arg2 = value_add (arg1, value_from_longest (builtin_type_char,
|
|||
|
(LONGEST) 1));
|
|||
|
value_assign (arg1, arg2);
|
|||
|
return arg1;
|
|||
|
}
|
|||
|
|
|||
|
case UNOP_POSTDECREMENT:
|
|||
|
arg1 = evaluate_subexp (expect_type, exp, pos, noside);
|
|||
|
if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
|
|||
|
return arg1;
|
|||
|
else if (unop_user_defined_p (op, arg1))
|
|||
|
{
|
|||
|
return value_x_unop (arg1, op);
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
arg2 = value_sub (arg1, value_from_longest (builtin_type_char,
|
|||
|
(LONGEST) 1));
|
|||
|
value_assign (arg1, arg2);
|
|||
|
return arg1;
|
|||
|
}
|
|||
|
|
|||
|
case OP_THIS:
|
|||
|
(*pos) += 1;
|
|||
|
return value_of_this (1);
|
|||
|
|
|||
|
case OP_TYPE:
|
|||
|
error ("Attempt to use a type name as an expression");
|
|||
|
|
|||
|
default:
|
|||
|
/* Removing this case and compiling with gcc -Wall reveals that
|
|||
|
a lot of cases are hitting this case. Some of these should
|
|||
|
probably be removed from expression.h (e.g. do we need a BINOP_SCOPE
|
|||
|
and an OP_SCOPE?); others are legitimate expressions which are
|
|||
|
(apparently) not fully implemented.
|
|||
|
|
|||
|
If there are any cases landing here which mean a user error,
|
|||
|
then they should be separate cases, with more descriptive
|
|||
|
error messages. */
|
|||
|
|
|||
|
error ("\
|
|||
|
GDB does not (yet) know how to evaluate that kind of expression");
|
|||
|
}
|
|||
|
|
|||
|
nosideret:
|
|||
|
return value_from_longest (builtin_type_long, (LONGEST) 1);
|
|||
|
}
|
|||
|
|
|||
|
/* Evaluate a subexpression of EXP, at index *POS,
|
|||
|
and return the address of that subexpression.
|
|||
|
Advance *POS over the subexpression.
|
|||
|
If the subexpression isn't an lvalue, get an error.
|
|||
|
NOSIDE may be EVAL_AVOID_SIDE_EFFECTS;
|
|||
|
then only the type of the result need be correct. */
|
|||
|
|
|||
|
static value_ptr
|
|||
|
evaluate_subexp_for_address (exp, pos, noside)
|
|||
|
register struct expression *exp;
|
|||
|
register int *pos;
|
|||
|
enum noside noside;
|
|||
|
{
|
|||
|
enum exp_opcode op;
|
|||
|
register int pc;
|
|||
|
struct symbol *var;
|
|||
|
|
|||
|
pc = (*pos);
|
|||
|
op = exp->elts[pc].opcode;
|
|||
|
|
|||
|
switch (op)
|
|||
|
{
|
|||
|
case UNOP_IND:
|
|||
|
(*pos)++;
|
|||
|
return evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
|||
|
|
|||
|
case UNOP_MEMVAL:
|
|||
|
(*pos) += 3;
|
|||
|
return value_cast (lookup_pointer_type (exp->elts[pc + 1].type),
|
|||
|
evaluate_subexp (NULL_TYPE, exp, pos, noside));
|
|||
|
|
|||
|
case OP_VAR_VALUE:
|
|||
|
var = exp->elts[pc + 2].symbol;
|
|||
|
|
|||
|
/* C++: The "address" of a reference should yield the address
|
|||
|
* of the object pointed to. Let value_addr() deal with it. */
|
|||
|
if (TYPE_CODE (SYMBOL_TYPE (var)) == TYPE_CODE_REF)
|
|||
|
goto default_case;
|
|||
|
|
|||
|
(*pos) += 4;
|
|||
|
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
|||
|
{
|
|||
|
struct type *type =
|
|||
|
lookup_pointer_type (SYMBOL_TYPE (var));
|
|||
|
enum address_class sym_class = SYMBOL_CLASS (var);
|
|||
|
|
|||
|
if (sym_class == LOC_CONST
|
|||
|
|| sym_class == LOC_CONST_BYTES
|
|||
|
|| sym_class == LOC_REGISTER
|
|||
|
|| sym_class == LOC_REGPARM)
|
|||
|
error ("Attempt to take address of register or constant.");
|
|||
|
|
|||
|
return
|
|||
|
value_zero (type, not_lval);
|
|||
|
}
|
|||
|
else
|
|||
|
return
|
|||
|
locate_var_value
|
|||
|
(var,
|
|||
|
block_innermost_frame (exp->elts[pc + 1].block));
|
|||
|
|
|||
|
default:
|
|||
|
default_case:
|
|||
|
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
|||
|
{
|
|||
|
value_ptr x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
|||
|
if (VALUE_LVAL (x) == lval_memory)
|
|||
|
return value_zero (lookup_pointer_type (VALUE_TYPE (x)),
|
|||
|
not_lval);
|
|||
|
else
|
|||
|
error ("Attempt to take address of non-lval");
|
|||
|
}
|
|||
|
return value_addr (evaluate_subexp (NULL_TYPE, exp, pos, noside));
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* Evaluate like `evaluate_subexp' except coercing arrays to pointers.
|
|||
|
When used in contexts where arrays will be coerced anyway, this is
|
|||
|
equivalent to `evaluate_subexp' but much faster because it avoids
|
|||
|
actually fetching array contents (perhaps obsolete now that we have
|
|||
|
VALUE_LAZY).
|
|||
|
|
|||
|
Note that we currently only do the coercion for C expressions, where
|
|||
|
arrays are zero based and the coercion is correct. For other languages,
|
|||
|
with nonzero based arrays, coercion loses. Use CAST_IS_CONVERSION
|
|||
|
to decide if coercion is appropriate.
|
|||
|
|
|||
|
*/
|
|||
|
|
|||
|
value_ptr
|
|||
|
evaluate_subexp_with_coercion (exp, pos, noside)
|
|||
|
register struct expression *exp;
|
|||
|
register int *pos;
|
|||
|
enum noside noside;
|
|||
|
{
|
|||
|
register enum exp_opcode op;
|
|||
|
register int pc;
|
|||
|
register value_ptr val;
|
|||
|
struct symbol *var;
|
|||
|
|
|||
|
pc = (*pos);
|
|||
|
op = exp->elts[pc].opcode;
|
|||
|
|
|||
|
switch (op)
|
|||
|
{
|
|||
|
case OP_VAR_VALUE:
|
|||
|
var = exp->elts[pc + 2].symbol;
|
|||
|
if (TYPE_CODE (check_typedef (SYMBOL_TYPE (var))) == TYPE_CODE_ARRAY
|
|||
|
&& CAST_IS_CONVERSION)
|
|||
|
{
|
|||
|
(*pos) += 4;
|
|||
|
val =
|
|||
|
locate_var_value
|
|||
|
(var, block_innermost_frame (exp->elts[pc + 1].block));
|
|||
|
return value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (SYMBOL_TYPE (var))),
|
|||
|
val);
|
|||
|
}
|
|||
|
/* FALLTHROUGH */
|
|||
|
|
|||
|
default:
|
|||
|
return evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* Evaluate a subexpression of EXP, at index *POS,
|
|||
|
and return a value for the size of that subexpression.
|
|||
|
Advance *POS over the subexpression. */
|
|||
|
|
|||
|
static value_ptr
|
|||
|
evaluate_subexp_for_sizeof (exp, pos)
|
|||
|
register struct expression *exp;
|
|||
|
register int *pos;
|
|||
|
{
|
|||
|
enum exp_opcode op;
|
|||
|
register int pc;
|
|||
|
struct type *type;
|
|||
|
value_ptr val;
|
|||
|
|
|||
|
pc = (*pos);
|
|||
|
op = exp->elts[pc].opcode;
|
|||
|
|
|||
|
switch (op)
|
|||
|
{
|
|||
|
/* This case is handled specially
|
|||
|
so that we avoid creating a value for the result type.
|
|||
|
If the result type is very big, it's desirable not to
|
|||
|
create a value unnecessarily. */
|
|||
|
case UNOP_IND:
|
|||
|
(*pos)++;
|
|||
|
val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
|
|||
|
type = check_typedef (VALUE_TYPE (val));
|
|||
|
type = check_typedef (TYPE_TARGET_TYPE (type));
|
|||
|
return value_from_longest (builtin_type_int, (LONGEST)
|
|||
|
TYPE_LENGTH (type));
|
|||
|
|
|||
|
case UNOP_MEMVAL:
|
|||
|
(*pos) += 3;
|
|||
|
type = check_typedef (exp->elts[pc + 1].type);
|
|||
|
return value_from_longest (builtin_type_int,
|
|||
|
(LONGEST) TYPE_LENGTH (type));
|
|||
|
|
|||
|
case OP_VAR_VALUE:
|
|||
|
(*pos) += 4;
|
|||
|
type = check_typedef (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
|
|||
|
return
|
|||
|
value_from_longest (builtin_type_int, (LONGEST) TYPE_LENGTH (type));
|
|||
|
|
|||
|
default:
|
|||
|
val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
|
|||
|
return value_from_longest (builtin_type_int,
|
|||
|
(LONGEST) TYPE_LENGTH (VALUE_TYPE (val)));
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* Parse a type expression in the string [P..P+LENGTH). */
|
|||
|
|
|||
|
struct type *
|
|||
|
parse_and_eval_type (p, length)
|
|||
|
char *p;
|
|||
|
int length;
|
|||
|
{
|
|||
|
char *tmp = (char *)alloca (length + 4);
|
|||
|
struct expression *expr;
|
|||
|
tmp[0] = '(';
|
|||
|
memcpy (tmp+1, p, length);
|
|||
|
tmp[length+1] = ')';
|
|||
|
tmp[length+2] = '0';
|
|||
|
tmp[length+3] = '\0';
|
|||
|
expr = parse_expression (tmp);
|
|||
|
if (expr->elts[0].opcode != UNOP_CAST)
|
|||
|
error ("Internal error in eval_type.");
|
|||
|
return expr->elts[1].type;
|
|||
|
}
|
|||
|
|
|||
|
int
|
|||
|
calc_f77_array_dims (array_type)
|
|||
|
struct type *array_type;
|
|||
|
{
|
|||
|
int ndimen = 1;
|
|||
|
struct type *tmp_type;
|
|||
|
|
|||
|
if ((TYPE_CODE(array_type) != TYPE_CODE_ARRAY))
|
|||
|
error ("Can't get dimensions for a non-array type");
|
|||
|
|
|||
|
tmp_type = array_type;
|
|||
|
|
|||
|
while ((tmp_type = TYPE_TARGET_TYPE (tmp_type)))
|
|||
|
{
|
|||
|
if (TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY)
|
|||
|
++ndimen;
|
|||
|
}
|
|||
|
return ndimen;
|
|||
|
}
|