NetBSD/sys/compat/svr4/svr4_misc.c

1130 lines
26 KiB
C
Raw Normal View History

/* $NetBSD: svr4_misc.c,v 1.15 1995/01/10 00:04:03 christos Exp $ */
1994-10-26 08:27:43 +03:00
/*
* Copyright (c) 1994 Christos Zoulas
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
1994-10-24 20:37:34 +03:00
* SVR4 compatibility module.
*
1994-10-24 20:37:34 +03:00
* SVR4 system calls that are implemented differently in BSD are
* handled here.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/namei.h>
1994-06-24 11:30:17 +04:00
#include <sys/dir.h>
#include <sys/proc.h>
#include <sys/file.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <sys/filedesc.h>
#include <sys/ioctl.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/mman.h>
#include <sys/mount.h>
#include <sys/resource.h>
#include <sys/resourcevar.h>
#include <sys/socket.h>
#include <sys/vnode.h>
#include <sys/uio.h>
#include <sys/wait.h>
#include <sys/utsname.h>
#include <sys/unistd.h>
1994-10-24 20:37:34 +03:00
#include <sys/times.h>
#include <netinet/in.h>
1994-10-24 20:37:34 +03:00
#include <sys/syscallargs.h>
#include <miscfs/specfs/specdev.h>
1994-10-24 20:37:34 +03:00
#include <compat/svr4/svr4_types.h>
#include <compat/svr4/svr4_signal.h>
1994-10-24 20:37:34 +03:00
#include <compat/svr4/svr4_syscallargs.h>
#include <compat/svr4/svr4_util.h>
#include <compat/svr4/svr4_time.h>
#include <compat/svr4/svr4_dirent.h>
1994-11-14 09:10:37 +03:00
#include <compat/svr4/svr4_ulimit.h>
#include <compat/svr4/svr4_hrt.h>
#include <compat/svr4/svr4_wait.h>
#include <compat/svr4/svr4_statvfs.h>
1994-10-24 20:37:34 +03:00
#include <vm/vm.h>
/* XXX */ extern struct proc *pfind();
static __inline clock_t timeval_to_clock_t __P((struct timeval *));
static int svr4_setinfo __P((int, int, struct svr4_siginfo *));
struct svr4_hrtcntl_args;
static int svr4_hrtcntl __P((struct proc *, struct svr4_hrtcntl_args *,
register_t *));
static void bsd_statfs_to_svr4_statvfs __P((const struct statfs *,
struct svr4_statvfs *));
static struct proc *svr4_pfind __P((pid_t pid));
1994-10-24 20:37:34 +03:00
int
svr4_wait(p, uap, retval)
register struct proc *p;
register struct svr4_wait_args *uap;
register_t *retval;
{
struct wait4_args w4;
SCARG(&w4, rusage) = NULL;
SCARG(&w4, options) = 0;
SCARG(&w4, status) = SCARG(uap, status);
SCARG(&w4, pid) = WAIT_ANY;
return wait4(p, &w4, retval);
}
1994-10-24 20:37:34 +03:00
int
svr4_execv(p, uap, retval)
register struct proc *p;
register struct svr4_execv_args *uap;
register_t *retval;
{
struct execve_args ex;
caddr_t sg = stackgap_init();
CHECKALT(p, &sg, SCARG(uap, path));
SCARG(&ex, path) = SCARG(uap, path);
SCARG(&ex, argp) = SCARG(uap, argp);
SCARG(&ex, envp) = NULL;
return execve(p, &ex, retval);
}
1994-10-24 20:37:34 +03:00
int
svr4_execve(p, uap, retval)
register struct proc *p;
register struct execve_args *uap;
register_t *retval;
1994-10-24 20:37:34 +03:00
{
caddr_t sg = stackgap_init();
CHECKALT(p, &sg, SCARG(uap, path));
return execve(p, uap, retval);
}
1994-10-24 20:37:34 +03:00
int
svr4_time(p, uap, retval)
register struct proc *p;
register struct svr4_time_args *uap;
register_t *retval;
{
int error = 0;
struct timeval tv;
1994-10-24 20:37:34 +03:00
microtime(&tv);
if (SCARG(uap, t))
error = copyout(&tv.tv_sec, SCARG(uap, t),
sizeof(*(SCARG(uap, t))));
*retval = (int) tv.tv_sec;
1994-10-24 20:37:34 +03:00
return error;
}
1994-10-24 20:37:34 +03:00
/*
1994-10-24 20:37:34 +03:00
* Read SVR4-style directory entries. We suck them into kernel space so
* that they can be massaged before being copied out to user code. Like
* SunOS, we squish out `empty' entries.
*
* This is quite ugly, but what do you expect from compatibility code?
*/
1994-10-24 20:37:34 +03:00
int
svr4_getdents(p, uap, retval)
register struct proc *p;
register struct svr4_getdents_args *uap;
register_t *retval;
{
struct vnode *vp;
caddr_t inp, buf; /* BSD-format */
int len, reclen; /* BSD-format */
caddr_t outp; /* SVR4-format */
int resid; /* SVR4-format */
struct file *fp;
struct uio auio;
struct iovec aiov;
struct svr4_dirent idb;
off_t off; /* true file offset */
svr4_off_t soff; /* SYSV file offset */
int buflen, error, eofflag;
1994-10-24 20:37:34 +03:00
#define BSD_DIRENT(cp) ((struct dirent *)(cp))
#define SVR4_DIRENT(cp) ((struct svr4_dirent *)(cp))
#define SVR4_RECLEN(reclen) (reclen + sizeof(u_short))
if ((error = getvnode(p->p_fd, SCARG(uap, fd), &fp)) != 0)
return (error);
if ((fp->f_flag & FREAD) == 0)
return (EBADF);
vp = (struct vnode *) fp->f_data;
if (vp->v_type != VDIR) /* XXX vnode readdir op should do this */
return (EINVAL);
buflen = min(MAXBSIZE, SCARG(uap, nbytes));
buf = malloc(buflen, M_TEMP, M_WAITOK);
VOP_LOCK(vp);
off = fp->f_offset;
1994-10-24 20:37:34 +03:00
again:
aiov.iov_base = buf;
aiov.iov_len = buflen;
auio.uio_iov = &aiov;
auio.uio_iovcnt = 1;
auio.uio_rw = UIO_READ;
auio.uio_segflg = UIO_SYSSPACE;
auio.uio_procp = p;
auio.uio_resid = buflen;
auio.uio_offset = off;
/*
* First we read into the malloc'ed buffer, then
* we massage it into user space, one record at a time.
*/
error = VOP_READDIR(vp, &auio, fp->f_cred, &eofflag, (u_long *) 0, 0);
if (error)
1994-10-24 20:37:34 +03:00
goto out;
inp = buf;
outp = SCARG(uap, buf);
resid = SCARG(uap, nbytes);
if ((len = buflen - auio.uio_resid) == 0)
goto eof;
for (; len > 0; len -= reclen) {
reclen = ((struct dirent *) inp)->d_reclen;
if (reclen & 3)
panic("svr4_getdents");
off += reclen; /* each entry points to next */
if (BSD_DIRENT(inp)->d_fileno == 0) {
inp += reclen; /* it is a hole; squish it out */
continue;
}
if (reclen > len || resid < SVR4_RECLEN(reclen)) {
/* entry too big for buffer, so just stop */
outp++;
break;
}
/*
* Massage in place to make a SVR4-shaped dirent (otherwise
* we have to worry about touching user memory outside of
* the copyout() call).
*/
idb.d_ino = (svr4_ino_t) BSD_DIRENT(inp)->d_fileno;
idb.d_off = (svr4_off_t) off;
idb.d_reclen = (u_short) SVR4_RECLEN(reclen);
if ((error = copyout((caddr_t) & idb, outp, 10)) != 0 ||
(error = copyout(BSD_DIRENT(inp)->d_name, outp + 10,
BSD_DIRENT(inp)->d_namlen + 1)) != 0)
goto out;
/* advance past this real entry */
inp += reclen;
/* advance output past Sun-shaped entry */
outp += SVR4_RECLEN(reclen);
resid -= SVR4_RECLEN(reclen);
}
/* if we squished out the whole block, try again */
if (outp == SCARG(uap, buf))
goto again;
fp->f_offset = off; /* update the vnode offset */
1994-10-24 20:37:34 +03:00
eof:
*retval = SCARG(uap, nbytes) - resid;
1994-10-24 20:37:34 +03:00
out:
VOP_UNLOCK(vp);
free(buf, M_TEMP);
return error;
}
1994-10-24 20:37:34 +03:00
#define DEVZERO makedev(2, 12)
1994-10-24 20:37:34 +03:00
int
svr4_mmap(p, uap, retval)
register struct proc *p;
register struct svr4_mmap_args *uap;
register_t *retval;
{
struct filedesc *fdp;
struct file *fp;
struct vnode *vp;
struct mmap_args mm;
caddr_t rp;
/*
* Verify the arguments.
*/
if (SCARG(uap, prot) & ~(PROT_READ | PROT_WRITE | PROT_EXEC))
return EINVAL; /* XXX still needed? */
SCARG(&mm, prot) = SCARG(uap, prot);
SCARG(&mm, len) = SCARG(uap, len);
SCARG(&mm, flags) = SCARG(uap, flags);
SCARG(&mm, fd) = SCARG(uap, fd);
SCARG(&mm, addr) = SCARG(uap, addr);
SCARG(&mm, pos) = SCARG(uap, pos);
rp = (caddr_t) round_page(p->p_vmspace->vm_daddr + MAXDSIZ);
if ((SCARG(&mm, flags) & MAP_FIXED) == 0 &&
SCARG(&mm, addr) != 0 && SCARG(&mm, addr) < rp)
SCARG(&mm, addr) = rp;
/*
* Special case: if fd refers to /dev/zero, map as MAP_ANON. (XXX)
*/
fdp = p->p_fd;
if ((unsigned) SCARG(uap, fd) < fdp->fd_nfiles && /* XXX */
(fp = fdp->fd_ofiles[SCARG(uap, fd)]) != NULL && /* XXX */
fp->f_type == DTYPE_VNODE && /* XXX */
(vp = (struct vnode *) fp->f_data)->v_type == VCHR &&/* XXX */
vp->v_rdev == DEVZERO) { /* XXX */
SCARG(&mm, flags) |= MAP_ANON;
SCARG(&mm, fd) = -1;
}
return mmap(p, &mm, retval);
}
1994-10-24 20:37:34 +03:00
int
svr4_fchroot(p, uap, retval)
register struct proc *p;
register struct svr4_fchroot_args *uap;
register_t *retval;
{
struct filedesc *fdp = p->p_fd;
struct vnode *vp;
struct file *fp;
int error;
if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
return error;
if ((error = getvnode(fdp, SCARG(uap, fd), &fp)) != 0)
return error;
vp = (struct vnode *) fp->f_data;
VOP_LOCK(vp);
if (vp->v_type != VDIR)
error = ENOTDIR;
else
error = VOP_ACCESS(vp, VEXEC, p->p_ucred, p);
VOP_UNLOCK(vp);
if (error)
return error;
VREF(vp);
if (fdp->fd_rdir != NULL)
vrele(fdp->fd_rdir);
fdp->fd_rdir = vp;
return 0;
}
1994-10-24 20:37:34 +03:00
int
svr4_mknod(p, uap, retval)
register struct proc *p;
register struct svr4_mknod_args *uap;
register_t *retval;
{
caddr_t sg = stackgap_init();
CHECKALT(p, &sg, SCARG(uap, path));
if (S_ISFIFO(SCARG(uap, mode))) {
struct mkfifo_args ap;
SCARG(&ap, path) = SCARG(uap, path);
SCARG(&ap, mode) = SCARG(uap, mode);
return mkfifo(p, &ap, retval);
} else {
struct mknod_args ap;
SCARG(&ap, path) = SCARG(uap, path);
SCARG(&ap, mode) = SCARG(uap, mode);
SCARG(&ap, dev) = SCARG(uap, dev);
return mknod(p, &ap, retval);
}
}
1994-10-24 20:37:34 +03:00
int
svr4_vhangup(p, uap, retval)
struct proc *p;
void *uap;
int *retval;
{
return 0;
}
#define SVR4_CONFIG_UNUSED 1
#define SVR4_CONFIG_NGROUPS 2
#define SVR4_CONFIG_CHILD_MAX 3
#define SVR4_CONFIG_OPEN_FILES 4
#define SVR4_CONFIG_POSIX_VER 5
#define SVR4_CONFIG_PAGESIZE 6
#define SVR4_CONFIG_CLK_TCK 7
#define SVR4_CONFIG_XOPEN_VER 8
#define SVR4_CONFIG_PROF_TCK 10
1994-10-24 20:37:34 +03:00
int
svr4_sysconfig(p, uap, retval)
register struct proc *p;
register struct svr4_sysconfig_args *uap;
register_t *retval;
{
extern int maxfiles;
switch (SCARG(uap, name)) {
case SVR4_CONFIG_UNUSED:
*retval = 0;
break;
case SVR4_CONFIG_NGROUPS:
*retval = NGROUPS_MAX;
break;
case SVR4_CONFIG_CHILD_MAX:
*retval = maxproc;
break;
case SVR4_CONFIG_OPEN_FILES:
*retval = maxfiles;
break;
case SVR4_CONFIG_POSIX_VER:
*retval = 198808;
break;
case SVR4_CONFIG_PAGESIZE:
*retval = NBPG;
break;
case SVR4_CONFIG_CLK_TCK:
*retval = 60; /* should this be `hz', ie. 100? */
break;
case SVR4_CONFIG_XOPEN_VER:
*retval = 2; /* XXX: What should that be? */
break;
case SVR4_CONFIG_PROF_TCK:
*retval = 60; /* XXX: What should that be? */
break;
default:
return EINVAL;
}
return 0;
}
#define SVR4_RLIMIT_NOFILE 5 /* Other RLIMIT_* are the same */
#define SVR4_RLIMIT_VMEM 6 /* Other RLIMIT_* are the same */
#define SVR4_RLIM_NLIMITS 7
1994-10-24 20:37:34 +03:00
int
svr4_getrlimit(p, uap, retval)
register struct proc *p;
register struct svr4_getrlimit_args *uap;
register_t *retval;
{
struct compat_43_getrlimit_args ap;
if (SCARG(uap, which) >= SVR4_RLIM_NLIMITS)
return EINVAL;
1994-10-24 20:37:34 +03:00
if (SCARG(uap, which) == SVR4_RLIMIT_NOFILE)
SCARG(uap, which) = RLIMIT_NOFILE;
if (SCARG(uap, which) == SVR4_RLIMIT_VMEM)
SCARG(uap, which) = RLIMIT_RSS;
SCARG(&ap, which) = SCARG(uap, which);
SCARG(&ap, rlp) = SCARG(uap, rlp);
return compat_43_getrlimit(p, &ap, retval);
}
1994-10-24 20:37:34 +03:00
int
svr4_setrlimit(p, uap, retval)
register struct proc *p;
register struct svr4_setrlimit_args *uap;
register_t *retval;
{
struct compat_43_setrlimit_args ap;
if (SCARG(uap, which) >= SVR4_RLIM_NLIMITS)
return EINVAL;
if (SCARG(uap, which) == SVR4_RLIMIT_NOFILE)
SCARG(uap, which) = RLIMIT_NOFILE;
if (SCARG(uap, which) == SVR4_RLIMIT_VMEM)
SCARG(uap, which) = RLIMIT_RSS;
SCARG(&ap, which) = SCARG(uap, which);
SCARG(&ap, rlp) = SCARG(uap, rlp);
return compat_43_setrlimit(p, uap, retval);
}
1994-10-24 20:37:34 +03:00
int
svr4_syssun(p, uap, retval)
register struct proc *p;
register struct svr4_syssun_args *uap;
register_t *retval;
{
1994-10-24 20:37:34 +03:00
#ifdef DEBUG_SVR4
printf("syssun(%d)\n", SCARG(uap, gate));
1994-10-24 20:37:34 +03:00
#endif
return 0;
}
1994-10-24 20:37:34 +03:00
/* ARGSUSED */
int
svr4_break(p, uap, retval)
register struct proc *p;
register struct svr4_break_args *uap;
register_t *retval;
1994-10-24 20:37:34 +03:00
{
register struct vmspace *vm = p->p_vmspace;
vm_offset_t new, old;
int rv;
register int diff;
old = (vm_offset_t) vm->vm_daddr;
new = round_page(SCARG(uap, nsize));
diff = new - old;
DPRINTF(("break(1): old %x new %x diff %x\n", old, new, diff));
if ((int) diff > p->p_rlimit[RLIMIT_DATA].rlim_cur)
return ENOMEM;
old = round_page(old + ctob(vm->vm_dsize));
DPRINTF(("break(2): dsize = %x ctob %x\n",
vm->vm_dsize, ctob(vm->vm_dsize)));
new = old + diff;
DPRINTF(("break(3): old %x new %x diff %x\n", old, new, diff));
if (diff > 0) {
rv = vm_allocate(&vm->vm_map, &old, diff, FALSE);
if (rv != KERN_SUCCESS) {
uprintf("sbrk: grow failed, return = %d\n", rv);
return ENOMEM;
}
vm->vm_dsize += btoc(diff);
} else if (diff < 0) {
diff = -diff;
rv = vm_deallocate(&vm->vm_map, new, diff);
if (rv != KERN_SUCCESS) {
uprintf("sbrk: shrink failed, return = %d\n", rv);
return ENOMEM;
}
vm->vm_dsize -= btoc(diff);
1994-10-24 20:37:34 +03:00
}
return 0;
}
1994-10-24 20:37:34 +03:00
static __inline clock_t
timeval_to_clock_t(tv)
struct timeval *tv;
{
return tv->tv_sec * hz + tv->tv_usec / (1000000 / hz);
}
1994-10-24 20:37:34 +03:00
int
svr4_times(p, uap, retval)
register struct proc *p;
register struct svr4_times_args *uap;
register_t *retval;
{
int error;
struct tms tms;
struct timeval t;
struct rusage *ru;
struct rusage r;
struct getrusage_args ga;
caddr_t sg = stackgap_init();
ru = stackgap_alloc(&sg, sizeof(struct rusage));
SCARG(&ga, who) = RUSAGE_SELF;
SCARG(&ga, rusage) = ru;
1994-10-24 20:37:34 +03:00
error = getrusage(p, &ga, retval);
if (error)
return error;
1994-10-24 20:37:34 +03:00
if (error = copyin(ru, &r, sizeof r))
return error;
1994-10-24 20:37:34 +03:00
tms.tms_utime = timeval_to_clock_t(&r.ru_utime);
tms.tms_stime = timeval_to_clock_t(&r.ru_stime);
1994-10-24 20:37:34 +03:00
SCARG(&ga, who) = RUSAGE_CHILDREN;
error = getrusage(p, &ga, retval);
if (error)
return error;
1994-10-24 20:37:34 +03:00
if (error = copyin(ru, &r, sizeof r))
return error;
tms.tms_cutime = timeval_to_clock_t(&r.ru_utime);
tms.tms_cstime = timeval_to_clock_t(&r.ru_stime);
1994-10-24 20:37:34 +03:00
microtime(&t);
*retval = timeval_to_clock_t(&t);
1994-10-24 20:37:34 +03:00
return copyout(&tms, SCARG(uap, tp), sizeof(tms));
}
1994-11-14 09:10:37 +03:00
int
svr4_ulimit(p, uap, retval)
register struct proc *p;
register struct svr4_ulimit_args *uap;
register_t *retval;
{
switch (SCARG(uap, cmd)) {
case SVR4_GFILLIM:
*retval = p->p_rlimit[RLIMIT_FSIZE].rlim_cur / 512;
return 0;
case SVR4_SFILLIM:
{
int error;
struct setrlimit_args srl;
struct rlimit krl;
caddr_t sg = stackgap_init();
struct rlimit *url = (struct rlimit *)
stackgap_alloc(&sg, sizeof *url);
krl.rlim_cur = SCARG(uap, newlimit) * 512;
krl.rlim_max = p->p_rlimit[RLIMIT_FSIZE].rlim_max;
error = copyout(&krl, url, sizeof(*url));
if (error)
return error;
srl.which = RLIMIT_FSIZE;
srl.rlp = url;
error = setrlimit(p, &srl, retval);
if (error)
return error;
*retval = p->p_rlimit[RLIMIT_FSIZE].rlim_cur;
return 0;
}
case SVR4_GMEMLIM:
{
struct vmspace *vm = p->p_vmspace;
*retval = (long) vm->vm_daddr +
p->p_rlimit[RLIMIT_DATA].rlim_cur;
return 0;
}
case SVR4_GDESLIM:
*retval = p->p_rlimit[RLIMIT_NOFILE].rlim_cur;
return 0;
default:
return ENOSYS;
}
}
static struct proc *
svr4_pfind(pid)
pid_t pid;
{
struct proc *p;
/* look in the live processes */
if ((p = pfind(pid)) != NULL)
return p;
/* look in the zombies */
for (p = zombproc.lh_first; p != 0; p = p->p_list.le_next)
if (p->p_pid == pid)
return p;
return NULL;
}
1994-11-14 09:10:37 +03:00
int
svr4_pgrpsys(p, uap, retval)
register struct proc *p;
register struct svr4_pgrpsys_args *uap;
register_t *retval;
{
int error;
switch (SCARG(uap, cmd)) {
case 0: /* getpgrp() */
*retval = p->p_pgrp->pg_id;
return 0;
case 1: /* setpgrp() */
{
struct setpgid_args sa;
SCARG(&sa, pid) = 0;
SCARG(&sa, pgid) = 0;
if ((error = setpgid(p, &sa, retval)) != 0)
return error;
*retval = p->p_pgrp->pg_id;
return 0;
}
case 2: /* getsid(pid) */
if (SCARG(uap, pid) != 0 &&
(p = svr4_pfind(SCARG(uap, pid))) == NULL)
1994-11-14 09:10:37 +03:00
return ESRCH;
/*
* we return the pid of the session leader for this
* process
1994-11-14 09:10:37 +03:00
*/
*retval = (register_t) p->p_session->s_leader->p_pid;
1994-11-14 09:10:37 +03:00
return 0;
case 3: /* setsid() */
return setsid(p, NULL, retval);
case 4: /* getpgid(pid) */
if (SCARG(uap, pid) != 0 &&
(p = svr4_pfind(SCARG(uap, pid))) == NULL)
1994-11-14 09:10:37 +03:00
return ESRCH;
1994-11-14 09:10:37 +03:00
*retval = (int) p->p_pgrp->pg_id;
return 0;
case 5: /* setpgid(pid, pgid); */
{
struct setpgid_args sa;
SCARG(&sa, pid) = SCARG(uap, pid);
SCARG(&sa, pgid) = SCARG(uap, pgid);
return setpgid(p, &sa, retval);
}
default:
return EINVAL;
}
}
#define syscallarg(x) union { x datum; register_t pad; }
struct svr4_hrtcntl_args {
syscallarg(int) cmd;
syscallarg(int) fun;
syscallarg(int) clk;
syscallarg(svr4_hrt_interval_t *) iv;
syscallarg(svr4_hrt_time_t *) ti;
};
static int
svr4_hrtcntl(p, uap, retval)
register struct proc *p;
register struct svr4_hrtcntl_args *uap;
register_t *retval;
{
switch (SCARG(uap, fun)) {
case SVR4_HRT_CNTL_RES:
DPRINTF(("htrcntl(RES)\n"));
*retval = SVR4_HRT_USEC;
return 0;
case SVR4_HRT_CNTL_TOFD:
DPRINTF(("htrcntl(TOFD)\n"));
{
struct timeval tv;
svr4_hrt_time_t t;
if (SCARG(uap, clk) != SVR4_HRT_CLK_STD) {
DPRINTF(("clk == %d\n", SCARG(uap, clk)));
return EINVAL;
}
if (SCARG(uap, ti) == NULL) {
DPRINTF(("ti NULL\n"));
return EINVAL;
}
microtime(&tv);
t.h_sec = tv.tv_sec;
t.h_rem = tv.tv_usec;
t.h_res = SVR4_HRT_USEC;
return copyout(&t, SCARG(uap, ti), sizeof(t));
}
case SVR4_HRT_CNTL_START:
DPRINTF(("htrcntl(START)\n"));
return ENOSYS;
case SVR4_HRT_CNTL_GET:
DPRINTF(("htrcntl(GET)\n"));
return ENOSYS;
default:
DPRINTF(("Bad htrcntl command %d\n", SCARG(uap, fun)));
return ENOSYS;
}
}
int
svr4_hrtsys(p, uap, retval)
register struct proc *p;
register struct svr4_hrtsys_args *uap;
register_t *retval;
{
int error;
struct timeval tv;
switch (SCARG(uap, cmd)) {
case SVR4_HRT_CNTL:
return svr4_hrtcntl(p, (struct svr4_hrtcntl_args *) uap,
retval);
case SVR4_HRT_ALRM:
DPRINTF(("hrtalarm\n"));
return ENOSYS;
case SVR4_HRT_SLP:
DPRINTF(("hrtsleep\n"));
return ENOSYS;
case SVR4_HRT_CAN:
DPRINTF(("hrtcancel\n"));
return ENOSYS;
default:
DPRINTF(("Bad hrtsys command %d\n", SCARG(uap, cmd)));
return EINVAL;
}
}
static int
svr4_setinfo(pid, st, s)
int pid;
int st;
struct svr4_siginfo *s;
{
/*
* Not a very good status translation
* We don't know the sending process id, so we always assume ourselves
*/
struct svr4_siginfo i;
bzero(&i, sizeof(i));
if (WIFEXITED(st)) {
i.si_signo = 0;
i.si_status = WEXITSTATUS(st);
i.si_code = SVR4_CLD_EXITED;
}
else if (WIFSTOPPED(st)) {
i.si_signo = WSTOPSIG(st);
i.si_status = WSTOPSIG(st);
if (i.si_signo == SIGCONT)
i.si_code = SVR4_CLD_CONTINUED;
else
i.si_code = SVR4_CLD_STOPPED;
}
else {
i.si_signo = WTERMSIG(st);
i.si_status = WTERMSIG(st);
i.si_code = SVR4_CLD_KILLED;
}
if (WCOREDUMP(st)) {
i.si_code = SVR4_CLD_DUMPED;
i.si_addr = (svr4_caddr_t) 0xfeedbeef;
}
i.si_pid = pid;
i.si_uid = 0; /* XXX: */
DPRINTF(("siginfo[pid %d uid %d signo %d code %d errno %d status %d]\n",
i.si_pid, i.si_uid, i.si_signo, i.si_code, i.si_errno,
i.si_status));
return copyout(&i, s, sizeof(i));
}
int
svr4_waitsys(p, uap, retval)
register struct proc *p;
register struct svr4_waitsys_args *uap;
register_t *retval;
{
int nfound;
int error;
struct proc *q, *t;
switch (SCARG(uap, grp)) {
case SVR4_P_PID:
break;
case SVR4_P_PGID:
SCARG(uap, id) = -p->p_pgid;
break;
case SVR4_P_ALL:
SCARG(uap, id) = WAIT_ANY;
break;
default:
return EINVAL;
}
DPRINTF(("waitsys(%d, %d, %x, %x)\n",
SCARG(uap, grp), SCARG(uap, id), SCARG(uap, info),
SCARG(uap, options)));
loop:
nfound = 0;
for (q = p->p_children.lh_first; q != 0; q = q->p_sibling.le_next) {
if (SCARG(uap, id) != WAIT_ANY &&
q->p_pid != SCARG(uap, id) &&
q->p_pgid != -SCARG(uap, id)) {
DPRINTF(("pid %d pgid %d != %d\n", q->p_pid,
q->p_pgid, SCARG(uap, id)));
continue;
}
nfound++;
if (q->p_stat == SZOMB &&
((SCARG(uap, options) & (SVR4_WEXITED|SVR4_WTRAPPED)))) {
*retval = 0;
DPRINTF(("found %d\n", q->p_pid));
if ((error = svr4_setinfo(q->p_pid, (int) q->p_xstat,
SCARG(uap, info))) != 0)
return error;
if ((SCARG(uap, options) & SVR4_WNOWAIT)) {
DPRINTF(("Don't wait\n"));
return 0;
}
/*
* If we got the child via a ptrace 'attach',
* we need to give it back to the old parent.
*/
if (q->p_oppid && (t = pfind(q->p_oppid))) {
q->p_oppid = 0;
proc_reparent(q, t);
psignal(t, SIGCHLD);
wakeup((caddr_t)t);
return 0;
}
q->p_xstat = 0;
ruadd(&p->p_stats->p_cru, q->p_ru);
FREE(q->p_ru, M_ZOMBIE);
/*
* Decrement the count of procs running with this uid.
*/
(void)chgproccnt(q->p_cred->p_ruid, -1);
/*
* Free up credentials.
*/
if (--q->p_cred->p_refcnt == 0) {
crfree(q->p_cred->pc_ucred);
FREE(q->p_cred, M_SUBPROC);
}
/*
* Release reference to text vnode
*/
if (q->p_textvp)
vrele(q->p_textvp);
/*
* Finally finished with old proc entry.
* Unlink it from its process group and free it.
*/
leavepgrp(q);
LIST_REMOVE(q, p_list); /* off zombproc */
LIST_REMOVE(q, p_sibling);
/*
* Give machine-dependent layer a chance
* to free anything that cpu_exit couldn't
* release while still running in process context.
*/
cpu_wait(q);
FREE(q, M_PROC);
nprocs--;
return 0;
}
if (q->p_stat == SSTOP && (q->p_flag & P_WAITED) == 0 &&
(q->p_flag & P_TRACED ||
(SCARG(uap, options) & (SVR4_WSTOPPED|SVR4_WCONTINUED)))) {
DPRINTF(("jobcontrol %d\n", q->p_pid));
if (((SCARG(uap, options) & SVR4_WNOWAIT)) == 0)
q->p_flag |= P_WAITED;
else
DPRINTF(("Don't wait\n"));
*retval = 0;
return svr4_setinfo(q->p_pid, W_STOPCODE(q->p_xstat),
SCARG(uap, info));
}
}
if (nfound == 0)
return ECHILD;
if (SCARG(uap, options) & SVR4_WNOHANG) {
*retval = 0;
if ((error = svr4_setinfo(0, 0, SCARG(uap, info))) != 0)
return error;
return 0;
}
if (error = tsleep((caddr_t)p, PWAIT | PCATCH, "svr4_wait", 0))
return error;
goto loop;
}
static void
bsd_statfs_to_svr4_statvfs(bfs, sfs)
const struct statfs *bfs;
struct svr4_statvfs *sfs;
{
sfs->f_bsize = bfs->f_bsize;
sfs->f_frsize = bfs->f_bsize / 8; /* XXX */
sfs->f_blocks = bfs->f_blocks;
sfs->f_bfree = bfs->f_bfree;
sfs->f_bavail = bfs->f_bavail;
sfs->f_files = bfs->f_files;
sfs->f_ffree = bfs->f_ffree;
sfs->f_favail = bfs->f_ffree;
sfs->f_fsid = bfs->f_fsid.val[0];
bcopy(bfs->f_fstypename, sfs->f_basetype, sizeof(sfs->f_basetype));
sfs->f_flag = 0;
if (bfs->f_flags & MNT_RDONLY)
sfs->f_flag |= SVR4_ST_RDONLY;
if (bfs->f_flags & MNT_NOSUID)
sfs->f_flag |= SVR4_ST_NOSUID;
sfs->f_namemax = MAXNAMLEN;
bcopy(bfs->f_fstypename, sfs->f_fstr, sizeof(sfs->f_fstr)); /* XXX */
bzero(sfs->f_filler, sizeof(sfs->f_filler));
}
int
svr4_statvfs(p, uap, retval)
register struct proc *p;
register struct svr4_statvfs_args *uap;
register_t *retval;
{
struct statfs_args fs_args;
caddr_t sg = stackgap_init();
struct statfs *fs = stackgap_alloc(&sg, sizeof(struct statfs));
struct statfs bfs;
struct svr4_statvfs sfs;
int error;
CHECKALT(p, &sg, SCARG(uap, path));
SCARG(&fs_args, path) = SCARG(uap, path);
SCARG(&fs_args, buf) = fs;
if ((error = statfs(p, &fs_args, retval)) != 0)
return error;
if ((error = copyin(fs, &bfs, sizeof(bfs))) != 0)
return error;
bsd_statfs_to_svr4_statvfs(&bfs, &sfs);
return copyout(&sfs, SCARG(uap, fs), sizeof(sfs));
}
int
svr4_fstatvfs(p, uap, retval)
register struct proc *p;
register struct svr4_fstatvfs_args *uap;
register_t *retval;
{
struct fstatfs_args fs_args;
caddr_t sg = stackgap_init();
struct statfs *fs = stackgap_alloc(&sg, sizeof(struct statfs));
struct statfs bfs;
struct svr4_statvfs sfs;
int error;
SCARG(&fs_args, fd) = SCARG(uap, fd);
SCARG(&fs_args, buf) = fs;
if ((error = fstatfs(p, &fs_args, retval)) != 0)
return error;
if ((error = copyin(fs, &bfs, sizeof(bfs))) != 0)
return error;
bsd_statfs_to_svr4_statvfs(&bfs, &sfs);
return copyout(&sfs, SCARG(uap, fs), sizeof(sfs));
}
int
svr4_alarm(p, uap, retval)
register struct proc *p;
register struct svr4_alarm_args *uap;
register_t *retval;
{
int error;
struct itimerval *ntp, *otp, tp;
struct setitimer_args sa;
caddr_t sg = stackgap_init();
ntp = stackgap_alloc(&sg, sizeof(struct itimerval));
otp = stackgap_alloc(&sg, sizeof(struct itimerval));
timerclear(&tp.it_interval);
tp.it_value.tv_sec = SCARG(uap, sec);
tp.it_value.tv_usec = 0;
if ((error = copyout(&tp, ntp, sizeof(tp))) != 0)
return error;
SCARG(&sa, which) = ITIMER_REAL;
SCARG(&sa, itv) = ntp;
SCARG(&sa, oitv) = otp;
if ((error = setitimer(p, &sa, retval)) != 0)
return error;
if ((error = copyin(otp, &tp, sizeof(tp))) != 0)
return error;
if (tp.it_value.tv_usec)
tp.it_value.tv_sec++;
*retval = (register_t) tp.it_value.tv_sec;
return 0;
}