/* * This file was taken from the XFree86 distribution. * Minor modifications by Shawn Hargreaves are marked slh: */ /***************************************************************************\ |* *| |* Copyright 1993-1998 NVIDIA, Corporation. All rights reserved. *| |* *| |* NOTICE TO USER: The source code is copyrighted under U.S. and *| |* international laws. Users and possessors of this source code are *| |* hereby granted a nonexclusive, royalty-free copyright license to *| |* use this code in individual and commercial software. *| |* *| |* Any use of this source code must include, in the user documenta- *| |* tion and internal comments to the code, notices to the end user *| |* as follows: *| |* *| |* Copyright 1993-1998 NVIDIA, Corporation. All rights reserved. *| |* *| |* NVIDIA, CORPORATION MAKES NO REPRESENTATION ABOUT THE SUITABILITY *| |* OF THIS SOURCE CODE FOR ANY PURPOSE. IT IS PROVIDED "AS IS" *| |* WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND. NVIDIA, CORPOR- *| |* ATION DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOURCE CODE, *| |* INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGE- *| |* MENT, AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL *| |* NVIDIA, CORPORATION BE LIABLE FOR ANY SPECIAL, INDIRECT, INCI- *| |* DENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RE- *| |* SULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION *| |* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF *| |* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOURCE CODE. *| |* *| |* U.S. Government End Users. This source code is a "commercial *| |* item," as that term is defined at 48 C.F.R. 2.101 (OCT 1995), *| |* consisting of "commercial computer software" and "commercial *| |* computer software documentation," as such terms are used in *| |* 48 C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Govern- *| |* ment only as a commercial end item. Consistent with 48 C.F.R. *| |* 12.212 and 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), *| |* all U.S. Government End Users acquire the source code with only *| |* those rights set forth herein. *| |* *| \***************************************************************************/ /* $XFree86: * xc/programs/Xserver/hw/xfree86/vga256/drivers/nv/riva_hw.c,v 1.1.2.3 * 1998/12/26 00:12:39 dawes Exp $ */ #include #define inb inportb #define outb outportb #include "riva_hw.h" #include "riva_tbl.h" /* * This file is an OS-agnostic file used to make RIVA 128 and RIVA TNT * operate identically (except TNT has more memory and better 3D quality. */ static int nv3Busy(RIVA_HW_INST *chip) { return ((!(chip->PFIFO[0x00001214 / 4] & 0x10)) | (chip->PGRAPH[0x000006B0 / 4] & 0x01)); } static int nv4Busy(RIVA_HW_INST *chip) { return ((!(chip->PFIFO[0x00001214 / 4] & 0x10)) | (chip->PGRAPH[0x00000700 / 4] & 0x01)); } static int ShowHideCursor(RIVA_HW_INST *chip, int ShowHide) { int current; current = chip->CurrentState->cursor1; chip->CurrentState->cursor1 = (chip->CurrentState->cursor1 & 0xFE) | (ShowHide & 0x01); outb(0x3D4, 0x31); outb(0x3D5, chip->CurrentState->cursor1); return (current & 0x01); } /****************************************************************************\ * * * The video arbitration routines calculate some "magic" numbers. Fixes * * the snow seen when accessing the framebuffer without it. * * It just works (I hope). * * * \****************************************************************************/ #define DEFAULT_GR_LWM 100 #define DEFAULT_VID_LWM 100 #define DEFAULT_GR_BURST_SIZE 256 #define DEFAULT_VID_BURST_SIZE 128 #define VIDEO 0 #define GRAPHICS 1 #define MPORT 2 #define ENGINE 3 #define GFIFO_SIZE 320 #define GFIFO_SIZE_128 256 #define MFIFO_SIZE 120 #define VFIFO_SIZE 256 #define ABS(a) (a > 0 ? a : -a) typedef struct { int gdrain_rate; int vdrain_rate; int mdrain_rate; int gburst_size; int vburst_size; char vid_en; char gr_en; int wcmocc, wcgocc, wcvocc, wcvlwm, wcglwm; int by_gfacc; char vid_only_once; char gr_only_once; char first_vacc; char first_gacc; char first_macc; int vocc; int gocc; int mocc; char cur; char engine_en; char converged; int priority; } nv3_arb_info; typedef struct { int graphics_lwm; int video_lwm; int graphics_burst_size; int video_burst_size; int graphics_hi_priority; int media_hi_priority; int rtl_values; int valid; } nv3_fifo_info; typedef struct { char pix_bpp; char enable_video; char gr_during_vid; char enable_mp; int memory_width; int video_scale; int pclk_khz; int mclk_khz; int mem_page_miss; int mem_latency; char mem_aligned; } nv3_sim_state; typedef struct { int graphics_lwm; int video_lwm; int graphics_burst_size; int video_burst_size; int valid; } nv4_fifo_info; typedef struct { int pclk_khz; int mclk_khz; int nvclk_khz; char mem_page_miss; char mem_latency; int memory_width; char enable_video; char gr_during_vid; char pix_bpp; char mem_aligned; char enable_mp; } nv4_sim_state; static int nv3_iterate(nv3_fifo_info *res_info, nv3_sim_state *state, nv3_arb_info *ainfo) { int iter = 0; int tmp; int vfsize, mfsize, gfsize; int mburst_size = 32; int mmisses, gmisses, vmisses; int misses; int vlwm, glwm, mlwm; int last, next, cur; int max_gfsize; long ns; vlwm = 0; glwm = 0; mlwm = 0; vfsize = 0; gfsize = 0; cur = ainfo->cur; mmisses = 2; gmisses = 2; vmisses = 2; if (ainfo->gburst_size == 128) max_gfsize = GFIFO_SIZE_128; else max_gfsize = GFIFO_SIZE; max_gfsize = GFIFO_SIZE; while (1) { if (ainfo->vid_en) { if (ainfo->wcvocc > ainfo->vocc) ainfo->wcvocc = ainfo->vocc; if (ainfo->wcvlwm > vlwm) ainfo->wcvlwm = vlwm; ns = 1000000 * ainfo->vburst_size / (state->memory_width / 8) / state->mclk_khz; vfsize = ns * ainfo->vdrain_rate / 1000000; vfsize = ainfo->wcvlwm - ainfo->vburst_size + vfsize; } if (state->enable_mp) { if (ainfo->wcmocc > ainfo->mocc) ainfo->wcmocc = ainfo->mocc; } if (ainfo->gr_en) { if (ainfo->wcglwm > glwm) ainfo->wcglwm = glwm; if (ainfo->wcgocc > ainfo->gocc) ainfo->wcgocc = ainfo->gocc; ns = 1000000 * (ainfo->gburst_size / (state->memory_width / 8)) / state->mclk_khz; gfsize = ns * ainfo->gdrain_rate / 1000000; gfsize = ainfo->wcglwm - ainfo->gburst_size + gfsize; } mfsize = 0; if (!state->gr_during_vid && ainfo->vid_en) { if (ainfo->vid_en && (ainfo->vocc < 0) && !ainfo->vid_only_once) next = VIDEO; else if (ainfo->mocc < 0) next = MPORT; else if (ainfo->gocc < ainfo->by_gfacc) next = GRAPHICS; else return (0); } else switch (ainfo->priority) { case VIDEO: if (ainfo->vid_en && ainfo->vocc < 0 && !ainfo->vid_only_once) next = VIDEO; else if (ainfo->gr_en && ainfo->gocc < 0 && !ainfo->gr_only_once) next = GRAPHICS; else if (ainfo->mocc < 0) next = MPORT; else return (0); break; case GRAPHICS: if (ainfo->gr_en && ainfo->gocc < 0 && !ainfo->gr_only_once) next = GRAPHICS; else if (ainfo->vid_en && ainfo->vocc < 0 && !ainfo->vid_only_once) next = VIDEO; else if (ainfo->mocc < 0) next = MPORT; else return (0); break; default: if (ainfo->mocc < 0) next = MPORT; else if (ainfo->gr_en && ainfo->gocc < 0 && !ainfo->gr_only_once) next = GRAPHICS; else if (ainfo->vid_en && ainfo->vocc < 0 && !ainfo->vid_only_once) next = VIDEO; else return (0); break; } last = cur; cur = next; iter++; switch (cur) { case VIDEO: if (last == cur) misses = 0; else if (ainfo->first_vacc) misses = vmisses; else misses = 1; ainfo->first_vacc = 0; if (last != cur) { ns = 1000000 * (vmisses * state->mem_page_miss + state->mem_latency) / state->mclk_khz; vlwm = ns * ainfo->vdrain_rate / 1000000; vlwm = ainfo->vocc - vlwm; } ns = 1000000 * (misses * state->mem_page_miss + ainfo->vburst_size) / (state->memory_width / 8) / state->mclk_khz; ainfo->vocc = ainfo->vocc + ainfo->vburst_size - ns * ainfo->vdrain_rate / 1000000; ainfo->gocc = ainfo->gocc - ns * ainfo->gdrain_rate / 1000000; ainfo->mocc = ainfo->mocc - ns * ainfo->mdrain_rate / 1000000; break; case GRAPHICS: if (last == cur) misses = 0; else if (ainfo->first_gacc) misses = gmisses; else misses = 1; ainfo->first_gacc = 0; if (last != cur) { ns = 1000000 * (gmisses * state->mem_page_miss + state->mem_latency) / state->mclk_khz; glwm = ns * ainfo->gdrain_rate / 1000000; glwm = ainfo->gocc - glwm; } ns = 1000000 * (misses * state->mem_page_miss + ainfo->gburst_size / (state->memory_width / 8)) / state->mclk_khz; ainfo->vocc = ainfo->vocc + 0 - ns * ainfo->vdrain_rate / 1000000; ainfo->gocc = ainfo->gocc + ainfo->gburst_size - ns * ainfo->gdrain_rate / 1000000; ainfo->mocc = ainfo->mocc + 0 - ns * ainfo->mdrain_rate / 1000000; break; default: if (last == cur) misses = 0; else if (ainfo->first_macc) misses = mmisses; else misses = 1; ainfo->first_macc = 0; ns = 1000000 * (misses * state->mem_page_miss + mburst_size / (state->memory_width / 8)) / state->mclk_khz; ainfo->vocc = ainfo->vocc + 0 - ns * ainfo->vdrain_rate / 1000000; ainfo->gocc = ainfo->gocc + 0 - ns * ainfo->gdrain_rate / 1000000; ainfo->mocc = ainfo->mocc + mburst_size - ns * ainfo->mdrain_rate / 1000000; break; } if (iter > 100) { ainfo->converged = 0; return (1); } ns = 1000000 * ainfo->gburst_size / (state->memory_width / 8) / state->mclk_khz; tmp = ns * ainfo->gdrain_rate / 1000000; if (ABS(ainfo->gburst_size) + ((ABS(ainfo->wcglwm) + 16) & ~0x7) - tmp > max_gfsize) { ainfo->converged = 0; return (1); } ns = 1000000 * ainfo->vburst_size / (state->memory_width / 8) / state->mclk_khz; tmp = ns * ainfo->vdrain_rate / 1000000; if (ABS(ainfo->vburst_size) + (ABS(ainfo->wcvlwm + 32) & ~0xf) - tmp > VFIFO_SIZE) { ainfo->converged = 0; return (1); } if (ABS(ainfo->gocc) > max_gfsize) { ainfo->converged = 0; return (1); } if (ABS(ainfo->vocc) > VFIFO_SIZE) { ainfo->converged = 0; return (1); } if (ABS(ainfo->mocc) > MFIFO_SIZE) { ainfo->converged = 0; return (1); } if (ABS(vfsize) > VFIFO_SIZE) { ainfo->converged = 0; return (1); } if (ABS(gfsize) > max_gfsize) { ainfo->converged = 0; return (1); } if (ABS(mfsize) > MFIFO_SIZE) { ainfo->converged = 0; return (1); } } } static char nv3_arb(nv3_fifo_info *res_info, nv3_sim_state *state, nv3_arb_info *ainfo) { long ens, vns, mns, gns; int mmisses, gmisses, vmisses, eburst_size, mburst_size; int refresh_cycle; refresh_cycle = 0; refresh_cycle = 2 * (state->mclk_khz / state->pclk_khz) + 5; mmisses = 2; if (state->mem_aligned) gmisses = 2; else gmisses = 3; vmisses = 2; eburst_size = state->memory_width * 1; mburst_size = 32; gns = 1000000 * (gmisses * state->mem_page_miss + state->mem_latency) / state->mclk_khz; ainfo->by_gfacc = gns * ainfo->gdrain_rate / 1000000; ainfo->wcmocc = 0; ainfo->wcgocc = 0; ainfo->wcvocc = 0; ainfo->wcvlwm = 0; ainfo->wcglwm = 0; ainfo->engine_en = 1; ainfo->converged = 1; if (ainfo->engine_en) { ens = 1000000 * (state->mem_page_miss + eburst_size / (state->memory_width / 8) + refresh_cycle) / state->mclk_khz; ainfo->mocc = state->enable_mp ? 0 - ens * ainfo->mdrain_rate / 1000000 : 0; ainfo->vocc = ainfo->vid_en ? 0 - ens * ainfo->vdrain_rate / 1000000 : 0; ainfo->gocc = ainfo->gr_en ? 0 - ens * ainfo->gdrain_rate / 1000000 : 0; ainfo->cur = ENGINE; ainfo->first_vacc = 1; ainfo->first_gacc = 1; ainfo->first_macc = 1; nv3_iterate(res_info, state, ainfo); } if (state->enable_mp) { mns = 1000000 * (mmisses * state->mem_page_miss + mburst_size / (state->memory_width / 8) + refresh_cycle) / state->mclk_khz; ainfo->mocc = state->enable_mp ? 0 : mburst_size - mns * ainfo->mdrain_rate / 1000000; ainfo->vocc = ainfo->vid_en ? 0 : 0 - mns * ainfo->vdrain_rate / 1000000; ainfo->gocc = ainfo->gr_en ? 0 : 0 - mns * ainfo->gdrain_rate / 1000000; ainfo->cur = MPORT; ainfo->first_vacc = 1; ainfo->first_gacc = 1; ainfo->first_macc = 0; nv3_iterate(res_info, state, ainfo); } if (ainfo->gr_en) { ainfo->first_vacc = 1; ainfo->first_gacc = 0; ainfo->first_macc = 1; gns = 1000000 * (gmisses * state->mem_page_miss + ainfo->gburst_size / (state->memory_width / 8) + refresh_cycle) / state->mclk_khz; ainfo->gocc = ainfo->gburst_size - gns * ainfo->gdrain_rate / 1000000; ainfo->vocc = ainfo->vid_en ? 0 - gns * ainfo->vdrain_rate / 1000000 : 0; ainfo->mocc = state->enable_mp ? 0 - gns * ainfo->mdrain_rate / 1000000 : 0; ainfo->cur = GRAPHICS; nv3_iterate(res_info, state, ainfo); } if (ainfo->vid_en) { ainfo->first_vacc = 0; ainfo->first_gacc = 1; ainfo->first_macc = 1; vns = 1000000 * (vmisses * state->mem_page_miss + ainfo->vburst_size / (state->memory_width / 8) + refresh_cycle) / state->mclk_khz; ainfo->vocc = ainfo->vburst_size - vns * ainfo->vdrain_rate / 1000000; ainfo->gocc = ainfo->gr_en ? (0 - vns * ainfo->gdrain_rate / 1000000) : 0; ainfo->mocc = state->enable_mp ? 0 - vns * ainfo->mdrain_rate / 1000000 : 0; ainfo->cur = VIDEO; nv3_iterate(res_info, state, ainfo); } if (ainfo->converged) { res_info->graphics_lwm = (int)ABS(ainfo->wcglwm) + 16; res_info->video_lwm = (int)ABS(ainfo->wcvlwm) + 32; res_info->graphics_burst_size = ainfo->gburst_size; res_info->video_burst_size = ainfo->vburst_size; res_info->graphics_hi_priority = (ainfo->priority == GRAPHICS); res_info->media_hi_priority = (ainfo->priority == MPORT); if (res_info->video_lwm > 160) { res_info->graphics_lwm = 256; res_info->video_lwm = 128; res_info->graphics_burst_size = 64; res_info->video_burst_size = 64; res_info->graphics_hi_priority = 0; res_info->media_hi_priority = 0; ainfo->converged = 0; return (0); } if (res_info->video_lwm > 128) { res_info->video_lwm = 128; } return (1); } else { res_info->graphics_lwm = 256; res_info->video_lwm = 128; res_info->graphics_burst_size = 64; res_info->video_burst_size = 64; res_info->graphics_hi_priority = 0; res_info->media_hi_priority = 0; return (0); } } static char nv3_get_param(nv3_fifo_info *res_info, nv3_sim_state *state, nv3_arb_info *ainfo) { int done, g, v, p; done = 0; if (state->gr_during_vid && ainfo->vid_en) ainfo->priority = MPORT; else ainfo->priority = ainfo->gdrain_rate < ainfo->vdrain_rate ? VIDEO : GRAPHICS; for (p = 0; p < 2 && done != 1; p++) { for (g = 128; (g > 32) && (done != 1); g = g >> 1) { for (v = 128; (v >= 32) && (done != 1); v = v >> 1) { ainfo->priority = p; ainfo->gburst_size = g; ainfo->vburst_size = v; done = nv3_arb(res_info, state, ainfo); if (g == 128) { if ((res_info->graphics_lwm + g) > 256) done = 0; } } } } if (!done) return (0); else return (1); } static void nv3CalcArbitration(nv3_fifo_info *res_info, nv3_sim_state *state) { nv3_fifo_info save_info; nv3_arb_info ainfo; char res_gr, res_vid; ainfo.gr_en = 1; ainfo.vid_en = state->enable_video; ainfo.vid_only_once = 0; ainfo.gr_only_once = 0; ainfo.gdrain_rate = (int)state->pclk_khz * state->pix_bpp / 8; ainfo.vdrain_rate = (int)state->pclk_khz * 2; if (state->video_scale != 0) ainfo.vdrain_rate = ainfo.vdrain_rate / state->video_scale; ainfo.mdrain_rate = 33000; res_info->rtl_values = 0; if (!state->gr_during_vid && state->enable_video) { ainfo.gr_only_once = 1; ainfo.gr_en = 1; ainfo.gdrain_rate = 0; res_vid = nv3_get_param(res_info, state, &ainfo); res_vid = ainfo.converged; save_info.video_lwm = res_info->video_lwm; save_info.video_burst_size = res_info->video_burst_size; ainfo.vid_en = 1; ainfo.vid_only_once = 1; ainfo.gr_en = 1; ainfo.gdrain_rate = (int)state->pclk_khz * state->pix_bpp / 8; ainfo.vdrain_rate = 0; res_gr = nv3_get_param(res_info, state, &ainfo); res_gr = ainfo.converged; res_info->video_lwm = save_info.video_lwm; res_info->video_burst_size = save_info.video_burst_size; res_info->valid = res_gr & res_vid; } else { if (!ainfo.gr_en) ainfo.gdrain_rate = 0; if (!ainfo.vid_en) ainfo.vdrain_rate = 0; res_gr = nv3_get_param(res_info, state, &ainfo); res_info->valid = ainfo.converged; } } void nv3UpdateArbitrationSettings(unsigned VClk, unsigned pixelDepth, unsigned *burst, unsigned *lwm, RIVA_HW_INST *chip) { nv3_fifo_info fifo_data; nv3_sim_state sim_data; unsigned int M, N, P, pll, MClk; pll = chip->PRAMDAC[0x00000504 / 4]; M = (pll >> 0) & 0xFF; N = (pll >> 8) & 0xFF; P = (pll >> 16) & 0x0F; MClk = (N * chip->CrystalFreqKHz / M) >> P; sim_data.pix_bpp = (char)pixelDepth; sim_data.enable_video = 0; sim_data.enable_mp = 0; sim_data.video_scale = 1; sim_data.memory_width = (chip->PEXTDEV[0x00000000 / 4] & 0x10) ? 128 : 64; sim_data.memory_width = 128; sim_data.mem_latency = 11; sim_data.mem_aligned = 1; sim_data.mem_page_miss = 9; sim_data.gr_during_vid = 0; sim_data.pclk_khz = VClk; sim_data.mclk_khz = MClk; nv3CalcArbitration(&fifo_data, &sim_data); if (fifo_data.valid) { int b = fifo_data.graphics_burst_size >> 4; *burst = 0; while (b >>= 1) (*burst)++; *lwm = fifo_data.graphics_lwm >> 3; } else { *lwm = 0x24; *burst = 0x02; } } static void nv4CalcArbitration(nv4_fifo_info *fifo, nv4_sim_state *arb) { int data, pagemiss, cas, width, video_enable, color_key_enable, bpp, align; int nvclks, mclks, pclks, vpagemiss, crtpagemiss, vbs; int found, mclk_extra, mclk_loop, cbs, m1, p1; int mclk_freq, pclk_freq, nvclk_freq, mp_enable; int us_m, us_n, us_p, video_drain_rate, crtc_drain_rate; int vpm_us, us_video, vlwm, video_fill_us, cpm_us, us_crt, clwm; int craw, vraw; fifo->valid = 1; pclk_freq = arb->pclk_khz; mclk_freq = arb->mclk_khz; nvclk_freq = arb->nvclk_khz; pagemiss = arb->mem_page_miss; cas = arb->mem_latency; width = arb->memory_width >> 6; video_enable = arb->enable_video; color_key_enable = arb->gr_during_vid; bpp = arb->pix_bpp; align = arb->mem_aligned; mp_enable = arb->enable_mp; clwm = 0; vlwm = 0; cbs = 128; pclks = 2; nvclks = 2; nvclks += 2; nvclks += 1; mclks = 5; mclks += 3; mclks += 1; mclks += cas; mclks += 1; mclks += 1; mclks += 1; mclks += 1; mclk_extra = 3; nvclks += 2; nvclks += 1; nvclks += 1; nvclks += 1; if (mp_enable) mclks += 4; nvclks += 0; pclks += 0; found = 0; vbs = 0; while (found != 1) { fifo->valid = 1; found = 1; mclk_loop = mclks + mclk_extra; us_m = mclk_loop * 1000 * 1000 / mclk_freq; us_n = nvclks * 1000 * 1000 / nvclk_freq; us_p = nvclks * 1000 * 1000 / pclk_freq; if (video_enable) { video_drain_rate = pclk_freq * 2; crtc_drain_rate = pclk_freq * bpp / 8; vpagemiss = 2; vpagemiss += 1; crtpagemiss = 2; vpm_us = (vpagemiss * pagemiss) * 1000 * 1000 / mclk_freq; if (nvclk_freq * 2 > mclk_freq * width) video_fill_us = cbs * 1000 * 1000 / 16 / nvclk_freq; else video_fill_us = cbs * 1000 * 1000 / (8 * width) / mclk_freq; us_video = vpm_us + us_m + us_n + us_p + video_fill_us; vlwm = us_video * video_drain_rate / (1000 * 1000); vlwm++; vbs = 128; if (vlwm > 128) vbs = 64; if (vlwm > (256 - 64)) vbs = 32; if (nvclk_freq * 2 > mclk_freq * width) video_fill_us = vbs * 1000 * 1000 / 16 / nvclk_freq; else video_fill_us = vbs * 1000 * 1000 / (8 * width) / mclk_freq; cpm_us = crtpagemiss * pagemiss * 1000 * 1000 / mclk_freq; us_crt = us_video + video_fill_us + cpm_us + us_m + us_n + us_p; clwm = us_crt * crtc_drain_rate / (1000 * 1000); clwm++; } else { crtc_drain_rate = pclk_freq * bpp / 8; crtpagemiss = 2; crtpagemiss += 1; cpm_us = crtpagemiss * pagemiss * 1000 * 1000 / mclk_freq; us_crt = cpm_us + us_m + us_n + us_p; clwm = us_crt * crtc_drain_rate / (1000 * 1000); clwm++; } m1 = clwm + cbs - 512; p1 = m1 * pclk_freq / mclk_freq; p1 = p1 * bpp / 8; if ((p1 < m1) && (m1 > 0)) { fifo->valid = 0; found = 0; if (mclk_extra == 0) found = 1; mclk_extra--; } else if (video_enable) { if ((clwm > 511) || (vlwm > 255)) { fifo->valid = 0; found = 0; if (mclk_extra == 0) found = 1; mclk_extra--; } } else { if (clwm > 519) { fifo->valid = 0; found = 0; if (mclk_extra == 0) found = 1; mclk_extra--; } } craw = clwm; vraw = vlwm; if (clwm < 384) clwm = 384; if (vlwm < 128) vlwm = 128; data = (int)(clwm); fifo->graphics_lwm = data; fifo->graphics_burst_size = 128; data = (int)((vlwm + 15)); fifo->video_lwm = data; fifo->video_burst_size = vbs; } } static void nv4UpdateArbitrationSettings(unsigned VClk, unsigned pixelDepth, unsigned *burst, unsigned *lwm, RIVA_HW_INST *chip) { nv4_fifo_info fifo_data; nv4_sim_state sim_data; unsigned int M, N, P, pll, MClk, NVClk, cfg1; pll = chip->PRAMDAC[0x00000504 / 4]; M = (pll >> 0) & 0xFF; N = (pll >> 8) & 0xFF; P = (pll >> 16) & 0x0F; MClk = (N * chip->CrystalFreqKHz / M) >> P; pll = chip->PRAMDAC[0x00000500 / 4]; M = (pll >> 0) & 0xFF; N = (pll >> 8) & 0xFF; P = (pll >> 16) & 0x0F; NVClk = (N * chip->CrystalFreqKHz / M) >> P; cfg1 = chip->PFB[0x00000204 / 4]; sim_data.pix_bpp = (char)pixelDepth; sim_data.enable_video = 0; sim_data.enable_mp = 0; sim_data.memory_width = (chip->PEXTDEV[0x00000000 / 4] & 0x10) ? 128 : 64; sim_data.mem_latency = (char)cfg1 & 0x0F; sim_data.mem_aligned = 1; sim_data.mem_page_miss = (char)(((cfg1 >> 4) & 0x0F) + ((cfg1 >> 31) & 0x01)); sim_data.gr_during_vid = 0; sim_data.pclk_khz = VClk; sim_data.mclk_khz = MClk; sim_data.nvclk_khz = NVClk; nv4CalcArbitration(&fifo_data, &sim_data); if (fifo_data.valid) { int b = fifo_data.graphics_burst_size >> 4; *burst = 0; while (b >>= 1) (*burst)++; *lwm = fifo_data.graphics_lwm >> 3; } } /****************************************************************************\ * * * RIVA Mode State Routines * * * \****************************************************************************/ /* * Calculate the Video Clock parameters for the PLL. */ static int CalcVClock(int clockIn, int *clockOut, int *mOut, int *nOut, int *pOut, RIVA_HW_INST *chip) { unsigned lowM, highM, highP; unsigned DeltaNew, DeltaOld; unsigned VClk, Freq; unsigned M, N, P; DeltaOld = 0xFFFFFFFF; VClk = (unsigned)clockIn; if (chip->CrystalFreqKHz == 14318) { lowM = 8; highM = 14 - (chip->Architecture == 3); } else { lowM = 7; highM = 13 - (chip->Architecture == 3); } highP = 4 - (chip->Architecture == 3); for (P = 0; P <= highP; P++) { Freq = VClk << P; if ((Freq >= 128000) && (Freq <= chip->MaxVClockFreqKHz)) { for (M = lowM; M <= highM; M++) { N = (VClk * M / chip->CrystalFreqKHz) << P; Freq = (chip->CrystalFreqKHz * N / M) >> P; if (Freq > VClk) DeltaNew = Freq - VClk; else DeltaNew = VClk - Freq; if (DeltaNew < DeltaOld) { *mOut = M; *nOut = N; *pOut = P; *clockOut = Freq; DeltaOld = DeltaNew; } } } } return (DeltaOld != 0xFFFFFFFF); } /* * Calculate extended mode parameters (SVGA) and save in a * mode state structure. */ static void CalcStateExt(RIVA_HW_INST *chip, RIVA_HW_STATE *state, int bpp, int width, int hDisplaySize, int hDisplay, int hStart, int hEnd, int hTotal, int height, int vDisplay, int vStart, int vEnd, int vTotal, int dotClock) { int pixelDepth, VClk, m, n, p; /* * Save mode parameters. */ state->bpp = bpp; state->width = width; state->height = height; /* * Extended RIVA registers. */ pixelDepth = (bpp + 1) / 8; CalcVClock(dotClock, &VClk, &m, &n, &p, chip); switch (chip->Architecture) { case 3: nv3UpdateArbitrationSettings(VClk, pixelDepth * 8, &(state->arbitration0), &(state->arbitration1), chip); state->cursor0 = 0x00; state->cursor1 = 0x78; state->cursor2 = 0x00000000; state->pllsel = 0x10010100; state->config = ((width + 31) / 32) | (((pixelDepth > 2) ? 3 : pixelDepth) << 8) | 0x1000; state->general = 0x00000100; state->repaint1 = hDisplaySize < 1280 ? 0x06 : 0x02; break; case 4: nv4UpdateArbitrationSettings(VClk, pixelDepth * 8, &(state->arbitration0), &(state->arbitration1), chip); state->cursor0 = 0x00; state->cursor1 = 0xFC; state->cursor2 = 0x00000000; state->pllsel = 0x10000700; state->config = 0x00001114; state->general = bpp == 16 ? 0x00101100 : 0x00100100; state->repaint1 = hDisplaySize < 1280 ? 0x04 : 0x00; break; } state->vpll = (p << 16) | (n << 8) | m; state->screen = ((hTotal & 0x040) >> 2) | ((vDisplay & 0x400) >> 7) | ((vStart & 0x400) >> 8) | ((vDisplay & 0x400) >> 9) | ((vTotal & 0x400) >> 10); state->repaint0 = (((width / 8) * pixelDepth) & 0x700) >> 3; state->horiz = hTotal < 260 ? 0x00 : 0x01; state->pixel = pixelDepth > 2 ? 3 : pixelDepth; state->offset0 = state->offset1 = state->offset2 = state->offset3 = 0; state->pitch0 = state->pitch1 = state->pitch2 = state->pitch3 = pixelDepth * width; } /* * Load fixed function state and pre-calculated/stored state. */ #define LOAD_FIXED_STATE(tbl, dev) \ for (i = 0; i < sizeof(tbl##Table##dev) / 8; i++) \ chip->dev[tbl##Table##dev[i][0]] = tbl##Table##dev[i][1] #define LOAD_FIXED_STATE_8BPP(tbl, dev) \ for (i = 0; i < sizeof(tbl##Table##dev##_8BPP) / 8; i++) \ chip->dev[tbl##Table##dev##_8BPP[i][0]] = tbl##Table##dev##_8BPP[i][1] #define LOAD_FIXED_STATE_15BPP(tbl, dev) \ for (i = 0; i < sizeof(tbl##Table##dev##_15BPP) / 8; i++) \ chip->dev[tbl##Table##dev##_15BPP[i][0]] = tbl##Table##dev##_15BPP[i][1] #define LOAD_FIXED_STATE_16BPP(tbl, dev) \ for (i = 0; i < sizeof(tbl##Table##dev##_16BPP) / 8; i++) \ chip->dev[tbl##Table##dev##_16BPP[i][0]] = tbl##Table##dev##_16BPP[i][1] #define LOAD_FIXED_STATE_32BPP(tbl, dev) \ for (i = 0; i < sizeof(tbl##Table##dev##_32BPP) / 8; i++) \ chip->dev[tbl##Table##dev##_32BPP[i][0]] = tbl##Table##dev##_32BPP[i][1] static void LoadStateExt(RIVA_HW_INST *chip, RIVA_HW_STATE *state, int all) { int i; /* * Load HW fixed function state. */ LOAD_FIXED_STATE(Riva, PMC); LOAD_FIXED_STATE(Riva, PTIMER); /* * Make sure frame buffer config gets set before loading PRAMIN. */ chip->PFB[0x00000200 / 4] = state->config; switch (chip->Architecture) { case 3: LOAD_FIXED_STATE(nv3, PFIFO); LOAD_FIXED_STATE(nv3, PRAMIN); LOAD_FIXED_STATE(nv3, PGRAPH); switch (state->bpp) { case 15: case 16: LOAD_FIXED_STATE_15BPP(nv3, PRAMIN); LOAD_FIXED_STATE_15BPP(nv3, PGRAPH); chip->Tri03 = (RivaTexturedTriangle03 *)&(chip->FIFO[0x0000E000 / 4]); break; case 24: case 32: LOAD_FIXED_STATE_32BPP(nv3, PRAMIN); LOAD_FIXED_STATE_32BPP(nv3, PGRAPH); chip->Tri03 = 0L; break; case 8: default: LOAD_FIXED_STATE_8BPP(nv3, PRAMIN); LOAD_FIXED_STATE_8BPP(nv3, PGRAPH); chip->Tri03 = 0L; break; } for (i = 0x00000; i < 0x00800; i++) chip->PRAMIN[0x00000502 + i] = (i << 12) | 0x03; chip->PGRAPH[0x00000630 / 4] = state->offset0; chip->PGRAPH[0x00000634 / 4] = state->offset1; chip->PGRAPH[0x00000638 / 4] = state->offset2; chip->PGRAPH[0x0000063C / 4] = state->offset3; chip->PGRAPH[0x00000650 / 4] = state->pitch0; chip->PGRAPH[0x00000654 / 4] = state->pitch1; chip->PGRAPH[0x00000658 / 4] = state->pitch2; chip->PGRAPH[0x0000065C / 4] = state->pitch3; break; case 4: LOAD_FIXED_STATE(nv4, PFIFO); LOAD_FIXED_STATE(nv4, PRAMIN); LOAD_FIXED_STATE(nv4, PGRAPH); switch (state->bpp) { case 15: LOAD_FIXED_STATE_15BPP(nv4, PRAMIN); LOAD_FIXED_STATE_15BPP(nv4, PGRAPH); chip->Tri03 = (RivaTexturedTriangle03 *)&(chip->FIFO[0x0000E000 / 4]); break; case 16: LOAD_FIXED_STATE_16BPP(nv4, PRAMIN); LOAD_FIXED_STATE_16BPP(nv4, PGRAPH); chip->Tri03 = (RivaTexturedTriangle03 *)&(chip->FIFO[0x0000E000 / 4]); break; case 24: case 32: LOAD_FIXED_STATE_32BPP(nv4, PRAMIN); LOAD_FIXED_STATE_32BPP(nv4, PGRAPH); chip->Tri03 = 0L; break; case 8: default: LOAD_FIXED_STATE_8BPP(nv4, PRAMIN); LOAD_FIXED_STATE_8BPP(nv4, PGRAPH); chip->Tri03 = 0L; break; } chip->PGRAPH[0x00000640 / 4] = state->offset0; chip->PGRAPH[0x00000644 / 4] = state->offset1; chip->PGRAPH[0x00000648 / 4] = state->offset2; chip->PGRAPH[0x0000064C / 4] = state->offset3; chip->PGRAPH[0x00000670 / 4] = state->pitch0; chip->PGRAPH[0x00000674 / 4] = state->pitch1; chip->PGRAPH[0x00000678 / 4] = state->pitch2; chip->PGRAPH[0x0000067C / 4] = state->pitch3; break; } LOAD_FIXED_STATE(Riva, FIFO); /* * Load HW mode state. */ /* slh: added the if (all) checks */ outb(0x3D4, 0x19); outb(0x3D5, state->repaint0); outb(0x3D4, 0x1A); outb(0x3D5, state->repaint1); if (all) { outb(0x3D4, 0x25); outb(0x3D5, state->screen); } outb(0x3D4, 0x28); outb(0x3D5, state->pixel); if (all) { outb(0x3D4, 0x2D); outb(0x3D5, state->horiz); outb(0x3D4, 0x1B); outb(0x3D5, state->arbitration0); outb(0x3D4, 0x20); outb(0x3D5, state->arbitration1); } outb(0x3D4, 0x30); outb(0x3D5, state->cursor0); outb(0x3D4, 0x31); outb(0x3D5, state->cursor1); chip->PRAMDAC[0x00000300 / 4] = state->cursor2; if (all) { chip->PRAMDAC[0x00000508 / 4] = state->vpll; } chip->PRAMDAC[0x0000050C / 4] = state->pllsel; chip->PRAMDAC[0x00000600 / 4] = state->general; /* * Turn off VBlank enable and reset. */ *(chip->VBLANKENABLE) = 0; *(chip->VBLANK) = chip->VBlankBit; /* * Set interrupt enable. */ chip->PMC[0x00000140 / 4] = chip->EnableIRQ & 0x01; /* * Set current state pointer. */ chip->CurrentState = state; /* * Reset FIFO free count. */ chip->FifoFreeCount = 0; } static void UnloadStateExt(RIVA_HW_INST *chip, RIVA_HW_STATE *state) { /* * Save current HW state. */ outb(0x3D4, 0x19); state->repaint0 = inb(0x3D5); outb(0x3D4, 0x1A); state->repaint1 = inb(0x3D5); outb(0x3D4, 0x25); state->screen = inb(0x3D5); outb(0x3D4, 0x28); state->pixel = inb(0x3D5); outb(0x3D4, 0x2D); state->horiz = inb(0x3D5); outb(0x3D4, 0x1B); state->arbitration0 = inb(0x3D5); outb(0x3D4, 0x20); state->arbitration1 = inb(0x3D5); outb(0x3D4, 0x30); state->cursor0 = inb(0x3D5); outb(0x3D4, 0x31); state->cursor1 = inb(0x3D5); state->cursor2 = chip->PRAMDAC[0x00000300 / 4]; state->vpll = chip->PRAMDAC[0x00000508 / 4]; state->pllsel = chip->PRAMDAC[0x0000050C / 4]; state->general = chip->PRAMDAC[0x00000600 / 4]; state->config = chip->PFB[0x00000200 / 4]; switch (chip->Architecture) { case 3: state->offset0 = chip->PGRAPH[0x00000630 / 4]; state->offset1 = chip->PGRAPH[0x00000634 / 4]; state->offset2 = chip->PGRAPH[0x00000638 / 4]; state->offset3 = chip->PGRAPH[0x0000063C / 4]; state->pitch0 = chip->PGRAPH[0x00000650 / 4]; state->pitch1 = chip->PGRAPH[0x00000654 / 4]; state->pitch2 = chip->PGRAPH[0x00000658 / 4]; state->pitch3 = chip->PGRAPH[0x0000065C / 4]; break; case 4: state->offset0 = chip->PGRAPH[0x00000640 / 4]; state->offset1 = chip->PGRAPH[0x00000644 / 4]; state->offset2 = chip->PGRAPH[0x00000648 / 4]; state->offset3 = chip->PGRAPH[0x0000064C / 4]; state->pitch0 = chip->PGRAPH[0x00000670 / 4]; state->pitch1 = chip->PGRAPH[0x00000674 / 4]; state->pitch2 = chip->PGRAPH[0x00000678 / 4]; state->pitch3 = chip->PGRAPH[0x0000067C / 4]; break; } } static void SetStartAddress(RIVA_HW_INST *chip, unsigned start) { int offset = start >> 2; int pan = (start & 3) << 1; unsigned char tmp; /* * Unlock extended registers. */ outb(chip->LockUnlockIO, chip->LockUnlockIndex); outb(chip->LockUnlockIO + 1, 0x57); /* * Set start address. */ outb(0x3D4, 0x0D); outb(0x3D5, offset); outb(0x3D4, 0x0C); outb(0x3D5, offset >> 8); /* slh: added the TNT version of this routine. Not sure what this * really should be, but the changed code works on my TNT, where * the original did not. */ if (chip->Architecture > 3) { /* TNT */ outb(0x3D4, 0x19); tmp = inb(0x3D5); outb(0x3D5, ((offset >> 16) & 0x1F) | (tmp & 0xE0)); outb(0x3D4, 0x2D); tmp = inb(0x3D5); outb(0x3D5, ((offset >> 16) & 0x20) | (tmp & 0xDF)); } else { /* Riva 128 */ outb(0x3D4, 0x19); tmp = inb(0x3D5); outb(0x3D5, ((offset >> 16) & 0x0F) | (tmp & 0xF0)); } /* * 4 pixel pan register. */ offset = inb(chip->IO + 0x0A); outb(0x3C0, 0x13); outb(0x3C0, pan); } static void nv3SetSurfaces2D(RIVA_HW_INST *chip, unsigned surf0, unsigned surf1) { while (nv3Busy(chip)) ; chip->PGRAPH[0x00000630 / 4] = surf0; chip->PGRAPH[0x00000634 / 4] = surf1; } static void nv4SetSurfaces2D(RIVA_HW_INST *chip, unsigned surf0, unsigned surf1) { while (nv4Busy(chip)) ; chip->PGRAPH[0x00000640 / 4] = surf0; chip->PGRAPH[0x00000644 / 4] = surf1; } static void nv3SetSurfaces3D(RIVA_HW_INST *chip, unsigned surf0, unsigned surf1) { while (nv3Busy(chip)) ; chip->PGRAPH[0x00000638 / 4] = surf0; chip->PGRAPH[0x0000063C / 4] = surf1; } static void nv4SetSurfaces3D(RIVA_HW_INST *chip, unsigned surf0, unsigned surf1) { while (nv4Busy(chip)) ; chip->PGRAPH[0x00000648 / 4] = surf0; chip->PGRAPH[0x0000064C / 4] = surf1; } /****************************************************************************\ * * * Probe RIVA Chip Configuration * * * \****************************************************************************/ void nv3GetConfig(RIVA_HW_INST *chip) { /* * Fill in chip configuration. */ if (chip->PFB[0x00000000 / 4] & 0x00000020) { if (((chip->PMC[0x00000000 / 4] & 0xF0) == 0x20) && ((chip->PMC[0x00000000 / 4] & 0x0F) >= 0x02)) { /* * SDRAM 128 ZX. */ chip->RamBandwidthKBytesPerSec = 800000; switch (chip->PFB[0x00000000 / 4] & 0x03) { case 2: chip->RamAmountKBytes = 1024 * 4 - 32; break; case 1: chip->RamAmountKBytes = 1024 * 2 - 32; break; default: chip->RamAmountKBytes = 1024 * 8 - 32; break; } } else { chip->RamBandwidthKBytesPerSec = 1000000; chip->RamAmountKBytes = 1024 * 8 - 32; } } else { /* * SGRAM 128. */ chip->RamBandwidthKBytesPerSec = 1000000; switch (chip->PFB[0x00000000 / 4] & 0x00000003) { case 0: chip->RamAmountKBytes = 1024 * 8 - 32; break; case 2: chip->RamAmountKBytes = 1024 * 4 - 32; break; default: chip->RamAmountKBytes = 1024 * 2 - 32; break; } } chip->CrystalFreqKHz = (chip->PEXTDEV[0x00000000 / 4] & 0x00000020) ? 14318 : 13500; chip->CURSOR = &(chip->PRAMIN[0x00008000 / 4 - 0x0800 / 4]); chip->CURSORPOS = &(chip->PRAMDAC[0x0300 / 4]); chip->VBLANKENABLE = &(chip->PGRAPH[0x0140 / 4]); chip->VBLANK = &(chip->PGRAPH[0x0100 / 4]); chip->VBlankBit = 0x00000100; chip->MaxVClockFreqKHz = 230000; chip->LockUnlockIO = 0x3C4; chip->LockUnlockIndex = 0x06; /* * Set chip functions. */ chip->Busy = nv3Busy; chip->ShowHideCursor = ShowHideCursor; chip->CalcStateExt = CalcStateExt; chip->LoadStateExt = LoadStateExt; chip->UnloadStateExt = UnloadStateExt; chip->SetStartAddress = SetStartAddress; chip->SetSurfaces2D = nv3SetSurfaces2D; chip->SetSurfaces3D = nv3SetSurfaces3D; } void nv4GetConfig(RIVA_HW_INST *chip) { /* * Fill in chip configuration. */ switch (chip->PFB[0x00000000 / 4] & 0x00000003) { case 0: chip->RamAmountKBytes = 1024 * 32 - 128; break; case 1: chip->RamAmountKBytes = 1024 * 4 - 128; break; case 2: chip->RamAmountKBytes = 1024 * 8 - 128; break; case 3: default: chip->RamAmountKBytes = 1024 * 16 - 128; break; } switch ((chip->PFB[0x00000000 / 4] >> 3) & 0x00000003) { case 3: chip->RamBandwidthKBytesPerSec = 800000; break; default: chip->RamBandwidthKBytesPerSec = 1000000; break; } chip->CrystalFreqKHz = (chip->PEXTDEV[0x00000000 / 4] & 0x00000040) ? 14318 : 13500; chip->CURSOR = &(chip->PRAMIN[0x00010000 / 4 - 0x0800 / 4]); chip->CURSORPOS = &(chip->PRAMDAC[0x0300 / 4]); chip->VBLANKENABLE = &(chip->PCRTC[0x0140 / 4]); chip->VBLANK = &(chip->PCRTC[0x0100 / 4]); chip->VBlankBit = 0x00000001; chip->MaxVClockFreqKHz = 250000; chip->LockUnlockIO = 0x3D4; chip->LockUnlockIndex = 0x1F; /* * Set chip functions. */ chip->Busy = nv4Busy; chip->ShowHideCursor = ShowHideCursor; chip->CalcStateExt = CalcStateExt; chip->LoadStateExt = LoadStateExt; chip->UnloadStateExt = UnloadStateExt; chip->SetStartAddress = SetStartAddress; chip->SetSurfaces2D = nv4SetSurfaces2D; chip->SetSurfaces3D = nv4SetSurfaces3D; } int RivaGetConfig(RIVA_HW_INST *chip) { /* * Save this so future SW know whats it's dealing with. */ chip->Version = RIVA_SW_VERSION; /* * Chip specific configuration. */ switch (chip->Architecture) { case 3: nv3GetConfig(chip); break; case 4: nv4GetConfig(chip); break; default: return (-1); } /* * Fill in FIFO pointers. */ chip->Rop = (RivaRop *)&(chip->FIFO[0x00000000 / 4]); chip->Clip = (RivaClip *)&(chip->FIFO[0x00002000 / 4]); chip->Patt = (RivaPattern *)&(chip->FIFO[0x00004000 / 4]); chip->Pixmap = (RivaPixmap *)&(chip->FIFO[0x00006000 / 4]); chip->Blt = (RivaScreenBlt *)&(chip->FIFO[0x00008000 / 4]); chip->Bitmap = (RivaBitmap *)&(chip->FIFO[0x0000A000 / 4]); chip->Tri03 = (RivaTexturedTriangle03 *)&(chip->FIFO[0x0000E000 / 4]); return (0); }